softmax_op_xpu.cc 3.4 KB
Newer Older
Z
zhupengyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/softmax_op.h"
#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DDim = framework::DDim;

template <typename DeviceContext, typename T>
class SoftmaxXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<Tensor>("X");
    auto* out = context.Output<Tensor>("Out");
    const int rank = x->dims().size();
30
    int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
Z
zhupengyang 已提交
31 32 33 34

    // allocate memory on device.
    out->mutable_data<T>(context.GetPlace());

35 36 37 38 39 40 41
    std::vector<int> x_dims;
    for (int i = 0; i < rank; i++) {
      x_dims.push_back(x->dims()[i]);
    }
    if (axis < 0) {
      axis += rank;
    }
Z
zhupengyang 已提交
42 43

    auto& dev_ctx = context.template device_context<DeviceContext>();
44 45
    int r = xpu::softmax<T>(dev_ctx.x_context(), x->data<float>(),
                            out->data<float>(), x_dims, axis);
Z
zhupengyang 已提交
46 47 48
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU API(softmax2d_forward) return wrong "
49 50
                                   "value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
Z
zhupengyang 已提交
51 52 53 54 55 56 57 58 59 60 61
  }
};

template <typename DeviceContext, typename T>
class SoftmaxGradXPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* out = context.Input<Tensor>("Out");
    auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
    const int rank = dx->dims().size();
62
    int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
Z
zhupengyang 已提交
63 64 65 66

    // allocate memory on device.
    dx->mutable_data<T>(context.GetPlace());

67 68 69 70 71 72 73
    std::vector<int> x_dims;
    for (int i = 0; i < rank; i++) {
      x_dims.push_back(dx->dims()[i]);
    }
    if (axis < 0) {
      axis += rank;
    }
Z
zhupengyang 已提交
74 75

    auto& dev_ctx = context.template device_context<DeviceContext>();
76 77 78
    int r = xpu::softmax_grad<T>(dev_ctx.x_context(), out->data<float>(),
                                 dout->data<float>(), dx->data<float>(), x_dims,
                                 axis);
Z
zhupengyang 已提交
79 80 81
    PADDLE_ENFORCE_EQ(
        r, XPU_SUCCESS,
        platform::errors::External("XPU API(softmax2d_backward) return wrong "
82 83
                                   "value[%d %s]",
                                   r, XPUAPIErrorMsg[r]));
Z
zhupengyang 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(
    softmax, ops::SoftmaxXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(
    softmax_grad,
    ops::SoftmaxGradXPUKernel<paddle::platform::XPUDeviceContext, float>);

#endif  // PADDLE_WITH_XPU