lite_resnet50_test.cc 4.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <gflags/gflags.h>
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <cmath>

#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {

TEST(AnalysisPredictor, use_gpu) {
  std::string model_dir = FLAGS_infer_model + "/" + "model";
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
  config.SetModel(model_dir + "/model", model_dir + "/params");
W
Wilber 已提交
30
  config.EnableLiteEngine(paddle::AnalysisConfig::Precision::kFloat32, true);
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

  std::vector<PaddleTensor> inputs;
  auto predictor = CreatePaddlePredictor(config);
  const int batch = 1;
  const int channel = 3;
  const int height = 318;
  const int width = 318;
  const int input_num = batch * channel * height * width;
  std::vector<float> input(input_num, 1);

  PaddleTensor in;
  in.shape = {1, 3, 318, 318};
  in.data =
      PaddleBuf(static_cast<void*>(input.data()), input_num * sizeof(float));
  in.dtype = PaddleDType::FLOAT32;
  inputs.emplace_back(in);

  std::vector<PaddleTensor> outputs;
  ASSERT_TRUE(predictor->Run(inputs, &outputs));

  const std::vector<float> truth_values = {
52 53 54 55 56 57 58 59 60 61 62
      127.780396f, 738.16656f,  1013.2264f,  -438.17206f, 366.4022f,
      927.66187f,  736.2241f,   -633.68567f, -329.92737f, -430.15637f,
      -633.0639f,  -146.54858f, -1324.2804f, -1349.3661f, -242.67671f,
      117.44864f,  -801.7251f,  -391.51495f, -404.8202f,  454.16132f,
      515.48206f,  -133.03114f, 69.293076f,  590.09753f,  -1434.6917f,
      -1070.8903f, 307.0744f,   400.52573f,  -316.12177f, -587.1265f,
      -161.05742f, 800.3663f,   -96.47157f,  748.708f,    868.17645f,
      -447.9403f,  112.73656f,  1127.1992f,  47.43518f,   677.7219f,
      593.1881f,   -336.4011f,  551.3634f,   397.82474f,  78.39835f,
      -715.4006f,  405.96988f,  404.25684f,  246.01978f,  -8.430191f,
      131.36617f,  -648.0528f};
63 64 65 66 67

  const size_t expected_size = 1;
  EXPECT_EQ(outputs.size(), expected_size);
  float* data_o = static_cast<float*>(outputs[0].data.data());
  for (size_t j = 0; j < outputs[0].data.length() / sizeof(float); j += 10) {
68
    EXPECT_NEAR((data_o[j] - truth_values[j / 10]) / truth_values[j / 10], 0.,
W
Wilber 已提交
69
                12e-5);
70 71 72 73 74
  }
}

}  // namespace inference
}  // namespace paddle
W
Wilber 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130

namespace paddle_infer {

TEST(Predictor, use_gpu) {
  std::string model_dir = FLAGS_infer_model + "/" + "model";
  Config config;
  config.EnableUseGpu(100, 0);
  config.SetModel(model_dir + "/model", model_dir + "/params");
  config.EnableLiteEngine(PrecisionType::kFloat32);

  auto predictor = CreatePredictor(config);
  const int batch = 1;
  const int channel = 3;
  const int height = 318;
  const int width = 318;
  const int input_num = batch * channel * height * width;
  std::vector<float> input(input_num, 1);

  auto input_names = predictor->GetInputNames();
  auto input_t = predictor->GetInputHandle(input_names[0]);

  input_t->Reshape({1, 3, 318, 318});
  input_t->CopyFromCpu(input.data());
  predictor->Run();

  auto output_names = predictor->GetOutputNames();
  auto output_t = predictor->GetOutputHandle(output_names[0]);
  std::vector<int> output_shape = output_t->shape();
  size_t out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
                                   std::multiplies<int>());

  std::vector<float> out_data;
  out_data.resize(out_num);
  output_t->CopyToCpu(out_data.data());

  const std::vector<float> truth_values = {
      127.780396f, 738.16656f,  1013.2264f,  -438.17206f, 366.4022f,
      927.66187f,  736.2241f,   -633.68567f, -329.92737f, -430.15637f,
      -633.0639f,  -146.54858f, -1324.2804f, -1349.3661f, -242.67671f,
      117.44864f,  -801.7251f,  -391.51495f, -404.8202f,  454.16132f,
      515.48206f,  -133.03114f, 69.293076f,  590.09753f,  -1434.6917f,
      -1070.8903f, 307.0744f,   400.52573f,  -316.12177f, -587.1265f,
      -161.05742f, 800.3663f,   -96.47157f,  748.708f,    868.17645f,
      -447.9403f,  112.73656f,  1127.1992f,  47.43518f,   677.7219f,
      593.1881f,   -336.4011f,  551.3634f,   397.82474f,  78.39835f,
      -715.4006f,  405.96988f,  404.25684f,  246.01978f,  -8.430191f,
      131.36617f,  -648.0528f};

  float* data_o = out_data.data();
  for (size_t j = 0; j < out_num; j += 10) {
    EXPECT_NEAR((data_o[j] - truth_values[j / 10]) / truth_values[j / 10], 0.,
                10e-5);
  }
}

}  // namespace paddle_infer