optimizer.html 24.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Optimizer &mdash; PaddlePaddle  文档</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../../../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="索引"
              href="../../../genindex.html"/>
        <link rel="search" title="搜索" href="../../../search.html"/>
    <link rel="top" title="PaddlePaddle  文档" href="../../../index.html"/>
        <link rel="up" title="Model Configuration" href="../model_configs.html"/>
        <link rel="next" title="Pooling" href="pooling.html"/>
38
        <link rel="prev" title="Evaluators" href="evaluators.html"/> 
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../../../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../../../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../../../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
68
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
69 70 71 72 73 74 75 76 77 78 79 80
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
81
          <li><a href="/">Home</a></li>
82 83 84 85 86 87
        </ul>
      </div>
      <div class="doc-module">
        
        <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a></li>
88 89 90
<li class="toctree-l1"><a class="reference internal" href="../../../build_and_install/index_cn.html">安装与编译</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶使用</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../dev/index_cn.html">开发标准</a></li>
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a></li>
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a></li>
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../../../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul class="current">
<li class="toctree-l1"><a class="reference internal" href="../../../getstarted/index_cn.html">新手入门</a><ul>
115 116
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/quickstart_cn.html">快速开始</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../getstarted/concepts/use_concepts_cn.html">基本使用概念</a></li>
117 118
</ul>
</li>
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
<li class="toctree-l1"><a class="reference internal" href="../../../build_and_install/index_cn.html">安装与编译</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../build_and_install/pip_install_cn.html">使用pip安装</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../build_and_install/docker_install_cn.html">使用Docker安装运行</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../build_and_install/build_cn.html">用Docker编译和测试PaddlePaddle</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../build_and_install/build_from_source_cn.html">从源码编译</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../../../howto/index_cn.html">进阶使用</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/cmd_parameter/index_cn.html">命令行参数设置</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cmd_parameter/use_case_cn.html">使用案例</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cmd_parameter/arguments_cn.html">参数概述</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cmd_parameter/detail_introduction_cn.html">细节描述</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../../../howto/cluster/index_cn.html">分布式训练</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cluster/preparations_cn.html">环境准备</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cluster/cmd_argument_cn.html">启动参数说明</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/cluster/multi_cluster/index_cn.html">在不同集群中运行</a><ul>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/fabric_cn.html">使用fabric启动集群训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/openmpi_cn.html">在OpenMPI集群中提交训练作业</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/k8s_cn.html">Kubernetes单机训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/k8s_distributed_cn.html">Kubernetes分布式训练</a></li>
<li class="toctree-l4"><a class="reference internal" href="../../../howto/cluster/multi_cluster/k8s_aws_cn.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
142 143 144 145
</ul>
</li>
</ul>
</li>
146 147 148 149
<li class="toctree-l2"><a class="reference internal" href="../../../howto/capi/index_cn.html">C-API预测库</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/capi/compile_paddle_lib_cn.html">安装与编译C-API预测库</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/capi/organization_of_the_inputs_cn.html">输入/输出数据组织</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/capi/workflow_of_capi_cn.html">C-API使用流程</a></li>
150 151
</ul>
</li>
152
<li class="toctree-l2"><a class="reference internal" href="../../../howto/rnn/index_cn.html">RNN模型</a><ul>
153 154 155 156
<li class="toctree-l3"><a class="reference internal" href="../../../howto/rnn/rnn_config_cn.html">RNN配置</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/rnn/recurrent_group_cn.html">Recurrent Group教程</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/rnn/hierarchical_layer_cn.html">支持双层序列作为输入的Layer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../../../howto/rnn/hrnn_rnn_api_compare_cn.html">单双层RNN API对比介绍</a></li>
157 158
</ul>
</li>
159
<li class="toctree-l2"><a class="reference internal" href="../../../howto/optimization/gpu_profiling_cn.html">GPU性能调优</a></li>
160 161
</ul>
</li>
162 163 164
<li class="toctree-l1"><a class="reference internal" href="../../../dev/index_cn.html">开发标准</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../dev/contribute_to_paddle_cn.html">如何贡献代码</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../dev/write_docs_cn.html">如何贡献文档</a></li>
165 166 167 168 169 170
</ul>
</li>
<li class="toctree-l1 current"><a class="reference internal" href="../../index_cn.html">API</a><ul class="current">
<li class="toctree-l2 current"><a class="reference internal" href="../model_configs.html">模型配置</a><ul class="current">
<li class="toctree-l3"><a class="reference internal" href="activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="layer.html">Layers</a></li>
171
<li class="toctree-l3"><a class="reference internal" href="evaluators.html">Evaluators</a></li>
172 173 174 175 176 177
<li class="toctree-l3 current"><a class="current reference internal" href="#">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="attr.html">Parameter Attribute</a></li>
</ul>
</li>
178 179 180 181 182 183
<li class="toctree-l2"><a class="reference internal" href="../data.html">数据访问</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../data/data_reader.html">Data Reader Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/image.html">Image Interface</a></li>
<li class="toctree-l3"><a class="reference internal" href="../data/dataset.html">Dataset</a></li>
</ul>
</li>
184
<li class="toctree-l2"><a class="reference internal" href="../run_logic.html">训练与应用</a></li>
185
<li class="toctree-l2"><a class="reference internal" href="../fluid.html">Fluid</a><ul>
186 187 188 189 190 191 192 193 194 195 196
<li class="toctree-l3"><a class="reference internal" href="../fluid/layers.html">layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/data_feeder.html">data_feeder</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/executor.html">executor</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/initializer.html">initializer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/evaluator.html">evaluator</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/nets.html">nets</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/optimizer.html">optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/param_attr.html">param_attr</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/profiler.html">profiler</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/regularizer.html">regularizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../fluid/io.html">io</a></li>
197 198
</ul>
</li>
199 200
</ul>
</li>
201 202 203 204 205 206 207 208
<li class="toctree-l1"><a class="reference internal" href="../../../faq/index_cn.html">FAQ</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/build_and_install/index_cn.html">编译安装与单元测试</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/model/index_cn.html">模型配置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/parameter/index_cn.html">参数设置</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/local/index_cn.html">本地训练与预测</a></li>
<li class="toctree-l2"><a class="reference internal" href="../../../faq/cluster/index_cn.html">集群训练与预测</a></li>
</ul>
</li>
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
        <li><a href="../../index_cn.html">API</a> > </li>
      
        <li><a href="../model_configs.html">Model Configuration</a> > </li>
      
    <li>Optimizer</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="optimizer">
243
<h1>Optimizer<a class="headerlink" href="#optimizer" title="永久链接至标题"></a></h1>
244 245
<div class="section" id="momentum">
<h2>Momentum<a class="headerlink" href="#momentum" title="永久链接至标题"></a></h2>
246 247 248
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Momentum</code><span class="sig-paren">(</span><em>momentum=None</em>, <em>sparse=False</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
249 250
<dd><p>Momentum Optimizer.</p>
<p>When sparse=False, the momentum update formula is as follows:</p>
251
<div class="math">
252
\[\begin{split}v_{t} &amp;= k * v_{t-1} - \gamma_t (g_{t} + \lambda w_{t-1}) \\
253 254 255 256 257 258
w_{t} &amp;= w_{t-1} + v_{t} \\\end{split}\]</div>
<p>where, <span class="math">\(k\)</span> is momentum, <span class="math">\(\lambda\)</span> is decay rate,
<span class="math">\(\gamma_t\)</span> is learning rate at the t&#8217;th iteration.
<span class="math">\(w_{t}\)</span> is the weight as the t&#8217;th iteration.
And the <span class="math">\(v_{t}\)</span> is the history momentum variable.</p>
<p>When sparse=True, the update scheme:</p>
259
<div class="math">
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
\[\begin{split}\alpha_t &amp;= \alpha_{t-1} / k \\
\beta_t &amp;= \beta_{t-1} / (1 + \lambda \gamma_t) \\
u_t &amp;= u_{t-1} - \alpha_t \gamma_t g_t \\
v_t &amp;= v_{t-1} + \tau_{t-1} \alpha_t \gamma_t g_t \\
\tau_t &amp;= \tau_{t-1} + \beta_t / \alpha_t\end{split}\]</div>
<p>where <span class="math">\(k\)</span> is momentum, <span class="math">\(\lambda\)</span> is decay rate,
<span class="math">\(\gamma_t\)</span> is learning rate at the t&#8217;th iteration.</p>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>momentum</strong> (<em>float</em>) &#8211; the momentum factor.</li>
<li><strong>sparse</strong> (<em>bool</em>) &#8211; with sparse support or not, False by default.</li>
</ul>
</td>
</tr>
</tbody>
</table>
279 280
</dd></dl>

281 282 283
</div>
<div class="section" id="adam">
<h2>Adam<a class="headerlink" href="#adam" title="永久链接至标题"></a></h2>
284 285 286 287 288 289 290 291
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adam</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>epsilon=1e-08</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adam optimizer.
The details of please refer <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m(w, t) &amp; = \beta_1 m(w, t-1) + (1 - \beta_1) \nabla Q_i(w) \\
v(w, t) &amp; = \beta_2 v(w, t-1) + (1 - \beta_2)(\nabla Q_i(w)) ^2 \\
292
w &amp; = w - \frac{\eta m(w, t)}{\sqrt{v(w,t) + \epsilon}}\end{split}\]</div>
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in equation.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in equation. It is used to prevent
divided by zero.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

309 310 311
</div>
<div class="section" id="adamax">
<h2>Adamax<a class="headerlink" href="#adamax" title="永久链接至标题"></a></h2>
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">Adamax</code><span class="sig-paren">(</span><em>beta1=0.9</em>, <em>beta2=0.999</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adamax optimizer.</p>
<p>The details of please refer this <a class="reference external" href="https://arxiv.org/abs/1412.6980">Adam: A Method for Stochastic Optimization</a></p>
<div class="math">
\[\begin{split}m_t &amp; = \beta_1 * m_{t-1} + (1-\beta_1)* \nabla Q_i(w) \\
u_t &amp; = max(\beta_2*u_{t-1}, abs(\nabla Q_i(w))) \\
w_t &amp; = w_{t-1} - (\eta/(1-\beta_1^t))*m_t/u_t\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>beta1</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_1\)</span> in the equation.</li>
<li><strong>beta2</strong> (<em>float</em>) &#8211; the <span class="math">\(\beta_2\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

335 336 337
</div>
<div class="section" id="adagrad">
<h2>AdaGrad<a class="headerlink" href="#adagrad" title="永久链接至标题"></a></h2>
338 339 340 341 342 343 344 345 346 347 348
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaGrad</code><span class="sig-paren">(</span><em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>Adagrad(for ADAptive GRAdient algorithm) optimizer.</p>
<p>For details please refer this <a class="reference external" href="http://www.magicbroom.info/Papers/DuchiHaSi10.pdf">Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization</a>.</p>
<div class="math">
\[\begin{split}G &amp;= \sum_{\tau=1}^{t} g_{\tau} g_{\tau}^T \\
w &amp; = w - \eta diag(G)^{-\frac{1}{2}} \circ g\end{split}\]</div>
</dd></dl>

349 350 351
</div>
<div class="section" id="decayedadagrad">
<h2>DecayedAdaGrad<a class="headerlink" href="#decayedadagrad" title="永久链接至标题"></a></h2>
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">DecayedAdaGrad</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaGrad method with decayed sum gradients. The equations of this method
show as follow.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= 1/sqrt( ( E(g_t^2) + \epsilon )\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; The <span class="math">\(\rho\)</span> parameter in that equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; The <span class="math">\(\epsilon\)</span> parameter in that equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

374 375 376
</div>
<div class="section" id="adadelta">
<h2>AdaDelta<a class="headerlink" href="#adadelta" title="永久链接至标题"></a></h2>
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">AdaDelta</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>AdaDelta method. The details of adadelta please refer to this
<a class="reference external" href="http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf">ADADELTA: AN ADAPTIVE LEARNING RATE METHOD</a>.</p>
<div class="math">
\[\begin{split}E(g_t^2) &amp;= \rho * E(g_{t-1}^2) + (1-\rho) * g^2 \\
learning\_rate &amp;= sqrt( ( E(dx_{t-1}^2) + \epsilon ) / ( \
                  E(g_t^2) + \epsilon ) ) \\
E(dx_t^2) &amp;= \rho * E(dx_{t-1}^2) + (1-\rho) * (-g*learning\_rate)^2\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; <span class="math">\(\rho\)</span> in equation</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

401 402 403
</div>
<div class="section" id="rmsprop">
<h2>RMSProp<a class="headerlink" href="#rmsprop" title="永久链接至标题"></a></h2>
404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
<dl class="class">
<dt>
<em class="property">class </em><code class="descclassname">paddle.v2.optimizer.</code><code class="descname">RMSProp</code><span class="sig-paren">(</span><em>rho=0.95</em>, <em>epsilon=1e-06</em>, <em>**kwargs</em><span class="sig-paren">)</span></dt>
<dd><p>RMSProp(for Root Mean Square Propagation) optimizer. For details please
refer this <a class="reference external" href="http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf">slide</a>.</p>
<p>The equations of this method as follows:</p>
<div class="math">
\[\begin{split}v(w, t) &amp; = \rho v(w, t-1) + (1 - \rho)(\nabla Q_{i}(w))^2 \\
w &amp; = w - \frac{\eta} {\sqrt{v(w,t) + \epsilon}} \nabla Q_{i}(w)\end{split}\]</div>
<table class="docutils field-list" frame="void" rules="none">
<col class="field-name" />
<col class="field-body" />
<tbody valign="top">
<tr class="field-odd field"><th class="field-name">参数:</th><td class="field-body"><ul class="first last simple">
<li><strong>rho</strong> (<em>float</em>) &#8211; the <span class="math">\(\rho\)</span> in the equation. The forgetting factor.</li>
<li><strong>epsilon</strong> (<em>float</em>) &#8211; the <span class="math">\(\epsilon\)</span> in the equation.</li>
</ul>
</td>
</tr>
</tbody>
</table>
</dd></dl>

427 428 429 430 431 432 433 434 435 436 437 438 439
</div>
</div>


           </div>
          </div>
          <footer>
  
    <div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
      
        <a href="pooling.html" class="btn btn-neutral float-right" title="Pooling" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
      
      
440
        <a href="evaluators.html" class="btn btn-neutral" title="Evaluators" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473
      
    </div>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../../../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
474 475
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
476 477 478 479 480 481
        };
    </script>
      <script type="text/javascript" src="../../../_static/jquery.js"></script>
      <script type="text/javascript" src="../../../_static/underscore.js"></script>
      <script type="text/javascript" src="../../../_static/doctools.js"></script>
      <script type="text/javascript" src="../../../_static/translations.js"></script>
482
      <script type="text/javascript" src="https://cdn.bootcss.com/mathjax/2.7.0/MathJax.js"></script>
483 484 485 486 487 488 489 490 491 492 493 494 495 496
       
  

  
  
    <script type="text/javascript" src="../../../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../../../_static/js/paddle_doc_init.js"></script> 

</body>
</html>