group_sharded.py 11.1 KB
Newer Older
B
Baibaifan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import logging
from enum import Enum

import paddle

from paddle.optimizer import Optimizer
from paddle.distributed.utils import get_logger
23 24 25
from paddle.fluid.framework import in_dygraph_mode

# Old version
B
Baibaifan 已提交
26 27 28 29 30
from paddle.distributed.fleet.meta_optimizers.dygraph_optimizer.sharding_optimizer_stage2 import ShardingOptimizerStage2
from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage2 import ShardingStage2
from paddle.distributed.fleet.meta_parallel.sharding.sharding_stage3 import ShardingStage3
from paddle.distributed.fleet.meta_parallel.sharding.sharding_utils import ShardingScaler

31 32 33 34 35 36
# New version
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_optimizer_stage2 import GroupShardedOptimizerStage2
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage2 import GroupShardedStage2
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_stage3 import GroupShardedStage3
from paddle.distributed.fleet.meta_parallel.sharding.group_sharded_utils import GroupShardedScaler

B
Baibaifan 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50
logger_ = get_logger(logging.INFO)


def group_sharded_parallel(model,
                           optimizer,
                           level,
                           scaler=None,
                           group=None,
                           offload=False,
                           sync_buffers=False,
                           buffer_max_size=2**23,
                           segment_size=2**20,
                           sync_comm=False):
    """
B
Baibaifan 已提交
51 52
    Use group_sharded_parallel can perform group shared configuration on the model, optimizer and GradScaler. Level has three string options, 'os', 'os_g' and 'p_g_os' corresponds to three different usage scenarios: optimizer state segmentation, optimizer state + gradient segmentation, and parameter + gradient + optimizer state segmentation.
    Usually, optimizer state + gradient segmentation is actually a re optimization of optimizer state segmentation, so optimizer state + gradient segmentation can be used to realize optimizer state segmentation.
B
Baibaifan 已提交
53 54 55 56 57

    Args:
        model (Layer): The layer to be wrapped with group_sharded_parallel.
        optimizer (Optimizer): The optimizer to be wrapped with group_sharded_parallel.
        level (str): The different level of the group sharded. Such as `os`, `os_g`, `p_g_os`.
B
Baibaifan 已提交
58 59 60 61 62 63 64
        scaler (GradScaler, optional): If AMP is used, you need to pass GradScaler. Defaults to None, indicating that GradScaler is not used.
        group (Group, optional): The group instance. Defaults to None, indicating that the default environment group is used.
        offload (bool, optional): Whether to use the offload function. Defaults to False, which means that the offload function is not used.
        sync_buffers (bool, optional): Whether to broadcast model buffers. It is generally used when there are registered model buffers. Defaults to False, indicating that model buffers are not used.
        buffer_max_size (int, optional): The max size of the buffer used to integrate gradient in `os_g`. The larger the size, the more GPU memory will be used. Defaults to 2**23, which means that the dimension of the buffer is 2**23.
        segment_size (int, optional): The smallest size of parameter to be sharded in `p_g_os`. Defaults to 2**20, indicating that the dimension of the minimum segmented parameter is 2**20.
        sync_comm (bool, optional): Whether to use synchronous communication, only in `p_g_os` used. Defaults to False, indicating that asynchronous communication is used.
B
Baibaifan 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    
    Returns:
        model: A wrapper for group sharded given model.
        optimizer: A wrapper for group sharded given optimizer.
        scaler: A wrapper for group sharded given scaler.
    
    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            from paddle.fluid.dygraph.nn import Linear
            from paddle.distributed import fleet
            from paddle.distributed.sharding import group_sharded_parallel

            fleet.init(is_collective=True)
            group = paddle.distributed.new_group([0, 1])
            model = Linear(1000, 1000)

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip)

            # wrap sharding model, optimizer and scaler
            model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler)

            img, label = data
            label.stop_gradient = True
            img.stop_gradient = True

            out = model(img)
            loss = paddle.nn.functional.cross_entropy(input=out, label=label)

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()
    """
    # check optition type
    assert isinstance(
        model,
        paddle.nn.Layer), "The model must be the instance of paddle.nn.Layer."
    assert isinstance(
        optimizer, Optimizer
    ), "The optimizer must be the instance of paddle.optimizer.Optimizer."
    assert level in ['os', 'os_g', 'p_g_os'
                     ], "The level must be os, os_g or p_g_os."

    def check_dtype(param):
        return param.dtype == paddle.float16

B
Baibaifan 已提交
114
    params_fp16 = list(filter(check_dtype, model.parameters()))
B
Baibaifan 已提交
115 116 117 118 119 120 121
    if scaler is None and len(params_fp16) > 0:
        raise ValueError("Please enter the correct scaler.")
    # convert model/optimizer/scaler
    if level in ['os', 'os_g']:
        logger_.info("*" * 30)
        logger_.info("Sharded level os uses sharded level os_g achieved now.")
        logger_.info("*" * 30)
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        if in_dygraph_mode():
            optimizer = GroupShardedOptimizerStage2(
                params=optimizer._parameter_list,
                optim=optimizer,
                group=group,
                offload=offload)
            model = GroupShardedStage2(
                model,
                optimizer,
                group=group,
                sync_buffers=sync_buffers,
                buffer_max_size=buffer_max_size)
        else:
            optimizer = ShardingOptimizerStage2(
                params=model.parameters(),
                optim=optimizer,
                group=group,
                offload=offload)
            model = ShardingStage2(
                model,
                optimizer,
                group=group,
                sync_buffers=sync_buffers,
                buffer_max_size=buffer_max_size)
B
Baibaifan 已提交
146
    elif level == 'p_g_os':
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
        if in_dygraph_mode():
            model = GroupShardedStage3(
                model,
                optimizer=optimizer,
                group=group,
                sync_buffers=sync_buffers,
                segment_size=segment_size,
                offload=offload,
                sync_comm=sync_comm)
        else:
            model = ShardingStage3(
                model,
                optimizer=optimizer,
                group=group,
                sync_buffers=sync_buffers,
                segment_size=segment_size,
                offload=offload,
                sync_comm=sync_comm)
B
Baibaifan 已提交
165 166 167
    else:
        raise ValueError("Please enter the correct level.")
    if params_fp16 and isinstance(scaler, paddle.amp.GradScaler):
168 169 170 171
        if in_dygraph_mode():
            scaler = GroupShardedScaler(scaler)
        else:
            scaler = ShardingScaler(scaler)
B
Baibaifan 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184
    logger_.info("*" * 30)
    logger_.info(
        "If there is a communication hang using group sharded, please check whether the communication operations of each process are unified."
    )
    logger_.info("*" * 30)

    return model, optimizer, scaler


def save_group_sharded_model(model, output, optimizer=None):
    """
    Group sharded encapsulated model and optimizer state saving module.

B
Baibaifan 已提交
185 186 187
    .. note::
        If using save_group_sharded_model saves the model. When loading again, you need to set the model or optimizer state before using group_sharded_parallel.

B
Baibaifan 已提交
188 189 190
    Args:
        model (Layer): A wrapper for group sharded given model.
        output (str): Save directory.
B
Baibaifan 已提交
191
        optimizer (Optimizer, optional): Group sharded encapsulated optimizer. Defaults to None, indicating that the optimizer state is not saved.
B
Baibaifan 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
    
    Examples:
        .. code-block:: python

            # required: distributed
            import paddle
            from paddle.fluid.dygraph.nn import Linear
            from paddle.distributed import fleet
            from paddle.distributed.sharding import group_sharded_parallel, save_group_sharded_model

            fleet.init(is_collective=True)
            group = paddle.distributed.new_group([0, 1])
            model = Linear(1000, 1000)

            clip = paddle.nn.ClipGradByGlobalNorm(clip_norm=1.0)
            optimizer = paddle.optimizer.AdamW(learning_rate=0.001, parameters=model.parameters(), weight_decay=0.00001, grad_clip=clip)

            # wrap sharding model, optimizer and scaler
            model, optimizer, scaler = group_sharded_parallel(model, optimizer, "p_g", scaler=scaler)

            img, label = data
            label.stop_gradient = True
            img.stop_gradient = True

            out = model(img)
            loss = paddle.nn.functional.cross_entropy(input=out, label=label)

            loss.backward()
            optimizer.step()
            optimizer.clear_grad()

            # save model and optimizer state_dict
B
Baibaifan 已提交
224
            save_group_sharded_model(model, optimizer, output=output_dir)
B
Baibaifan 已提交
225 226 227 228 229 230 231 232
    """
    logger_.info(
        "==========Begin to save group sharded model and optimizer==========")
    assert not os.path.isfile(
        output
    ), "Saving directory ({}) should be a directory, not a file".format(output)
    os.makedirs(output, exist_ok=True)
    output_model = os.path.join(output, "model.pdmodel")
233
    if isinstance(model, (ShardingStage2, GroupShardedStage2)):
B
Baibaifan 已提交
234
        paddle.save(model._layer.state_dict(), output_model)
235
    elif isinstance(model, (ShardingStage3, GroupShardedStage3)):
B
Baibaifan 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
        convert2cpu = True if model._offload else False
        model.get_all_parameters(convert2cpu=convert2cpu)
        paddle.save(model._layer.state_dict(), output_model)
    else:
        raise ValueError(
            "Please use the layer which is wrapped with group_sharded_parallel.")

    if optimizer is not None:
        assert hasattr(
            optimizer, "_optim"
        ), "Please use the optimizer which is wrapped with group_sharded_parallel."
        output_opt = os.path.join(output, "model.pdopt")
        paddle.save(optimizer._optim.state_dict(), output_opt)
    logger_.info(
        "==========End to save group sharded model and optimizer==========")