CRFLayer.cpp 5.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "CRFLayer.h"

namespace paddle {

REGISTER_LAYER(crf, CRFLayer);

bool CRFLayer::init(const LayerMap& layerMap,
                    const ParameterMap& parameterMap) {
  /* Initialize the basic parent class */
  Layer::init(layerMap, parameterMap);

  if (config_.type() == "crf") {
    CHECK_GE(inputLayers_.size(), 2UL);
    // the third output is sequence weight. one weight for each sequence
    CHECK_LE(inputLayers_.size(), 3UL);
  }

  // coeff only affect bp, keep consistent with CostLayer
  coeff_ = config_.has_coeff() ? config_.coeff() : real(1.0);
  if (inputLayers_.size() == 3) {
    weightLayer_ = inputLayers_[2];
  }

  numClasses_ = inputLayers_[0]->getSize();

  CHECK_GE(numClasses_, 2UL);

  CHECK_EQ(parameters_[0]->getSize(), numClasses_ * (numClasses_ + 2));

  parameter_ = parameters_[0];

  // We don't need sequenceStartPositions because each sample of output_ is
  // for the cost of one sequence.
  setNeedSequenceInfo(false);
  if (useGpu_) {
    tmpCpuInput_.reserve(inputLayers_.size());
    for (size_t i = 0; i < inputLayers_.size(); i++) {
      tmpCpuInput_.push_back(Argument());
    }
  }
  return true;
}

void CRFLayer::forward(PassType passType) {
  Layer::forward(passType);
  if (useGpu_) {
    for (size_t i = 0; i < inputLayers_.size(); i++) {
      tmpCpuInput_[i].resizeAndCopyFrom(getInput(i), false, HPPL_STREAM_1);
    }
    VectorPtr cpuParameterValue;
    VectorPtr cpuParameterGradient;
    cpuParameterValue =
      Vector::create(parameter_->getBuf(PARAMETER_VALUE)->getSize(), false);
    cpuParameterValue->
      copyFrom(*parameter_->getBuf(PARAMETER_VALUE), HPPL_STREAM_1);
    if (parameter_->getBuf(PARAMETER_GRADIENT)) {
      cpuParameterGradient =
        Vector::create(parameter_->getBuf(PARAMETER_GRADIENT)->getSize(),
                       false);
      cpuParameterGradient->
        copyFrom(*parameter_->getBuf(PARAMETER_GRADIENT), HPPL_STREAM_1);
    } else {
      cpuParameterGradient = nullptr;
    }
    forwardImp(tmpCpuInput_[0], tmpCpuInput_[1], cpuParameterValue,
               cpuParameterGradient);
    parameter_->getBuf(PARAMETER_VALUE)->copyFrom(*cpuParameterValue,
                                                  HPPL_STREAM_1);
    if (parameter_->getBuf(PARAMETER_GRADIENT)) {
      parameter_->getBuf(PARAMETER_GRADIENT)->copyFrom(*cpuParameterGradient,
                                                    HPPL_STREAM_1);
    }
  } else {
    forwardImp(getInput(0), getInput(1), parameter_->getBuf(PARAMETER_VALUE),
               parameter_->getBuf(PARAMETER_GRADIENT));
  }
}

void CRFLayer::forwardImp(const Argument&output,
                          const Argument& label,
                          VectorPtr parameterValue,
                          VectorPtr parameterGradient) {
  CHECK(label.sequenceStartPositions);
  CHECK(label.ids);

  int batchSize = output.getBatchSize();
  size_t numSequences = label.sequenceStartPositions->getSize() - 1;
  resizeOutput(numSequences, 1);
  std::vector<real> out(numSequences);

  const int* starts = label.sequenceStartPositions->getData(false);
  CHECK_EQ(starts[numSequences], batchSize);
  VectorPtr cpuParameterValue;
  VectorPtr cpuParameterGradient;


  for (size_t i = 0; i < numSequences; ++i) {
    if (i >= crfs_.size()) {
      crfs_.emplace_back(numClasses_,
                         parameterValue->getData(),
                         parameterGradient
                            ? parameterGradient->getData()
                            : nullptr);
    }
    out[i] = crfs_[i].forward(
        output.value->getData() + numClasses_ * starts[i],
        label.ids->getData() + starts[i], starts[i + 1] - starts[i]);
  }
  output_.value->copyFrom(out.data(), numSequences);
  if (weightLayer_) {
    const MatrixPtr& weight = getInputValue(*weightLayer_);
    getOutputValue()->dotMul(*getOutputValue(), *weight);
  }
}

void CRFLayer::backward(const UpdateCallback &callback) {
  (void)callback;
  if (useGpu_) {
    backwardImp(callback, tmpCpuInput_[0], tmpCpuInput_[1]);
    const_cast<Argument&>(getInput(0)).
            resizeAndCopyFrom(tmpCpuInput_[0], true, HPPL_STREAM_1);
    const_cast<Argument&>(getInput(1)).
            resizeAndCopyFrom(tmpCpuInput_[1], true, HPPL_STREAM_1);

  } else {
    backwardImp(callback, getInput(0), getInput(1));
  }
}

void CRFLayer::backwardImp(const UpdateCallback& callback,
                           const Argument&output,
                           const Argument& label) {
  const int* starts = label.sequenceStartPositions->getData(false);
  int numSequences = label.sequenceStartPositions->getSize() - 1;

  for (int i = 0; i < numSequences; ++i) {
    crfs_[i].backward(output.value->getData() + numClasses_ * starts[i],
                      output.grad->getData() + numClasses_ * starts[i],
                      label.ids->getData() + starts[i],
                      starts[i + 1] - starts[i]);
    if (weightLayer_) {
      real weight = getInputValue(*weightLayer_)->getElement(i, 0);
      MatrixPtr grad = output.grad->subRowMatrix(starts[i], starts[i+1]);
      grad->mulScalar(weight);
    }
  }
  if (coeff_ != real(1.0f)) {
    output.grad->mulScalar(coeff_);
  }
  parameter_->incUpdate(callback);
}

}  // namespace paddle