reshape_mkldnn_op.cc 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/flatten_op.h"
16 17 18
#include "paddle/fluid/operators/squeeze_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

19 20 21 22 23 24 25 26 27 28 29
namespace {
enum class ReshapeKernelOpName {
  reshape,
  reshape2,
  squeeze,
  squeeze2,
  flatten,
  flatten2,
};
}  // anonymous namespace

30 31 32 33 34
namespace paddle {
namespace operators {

using paddle::framework::LoDTensor;
using platform::GetMKLDNNFormat;
35
using platform::to_void_cast;
36

J
jakpiase 已提交
37 38 39 40 41 42 43
static std::vector<int> extract_shape(
    const std::vector<const Tensor*>& list_new_shape_tensor) {
  std::vector<int> vec_new_shape;
  vec_new_shape.reserve(list_new_shape_tensor.size());

  for (const auto& tensor : list_new_shape_tensor) {
    PADDLE_ENFORCE_EQ(
44 45
        tensor->dims(),
        phi::make_ddim({1}),
J
jakpiase 已提交
46 47 48 49 50 51 52 53 54 55 56
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
    vec_new_shape.emplace_back(*tensor->data<int32_t>());
  }

  return vec_new_shape;
}

57
template <typename T, ReshapeKernelOpName op_name>
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");

73 74
    framework::DDim x_dims, out_dims;
    InferInOutShape(ctx, x_dims, out_dims);
75

76
    auto x_vec_dims = phi::vectorize(x_dims);
77

78 79 80
    dnnl::memory::data_type x_type =
        framework::ToMKLDNNDataType(framework::TransToProtoVarType(x->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
81 82 83
        x_vec_dims,
        framework::TransToProtoVarType(x->dtype()),
        x_type,
84
        onednn_engine);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        x->format(), platform::to_void_cast(x->data<T>()));
    out->Resize(x_dims);  // to match x numel, format is changed later
    // reorder is done into a plain tag to allow usage with blocked formats
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        out, getPlainFormatTag(x), ctx.GetPlace());
    auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                    reorder_dst_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);

    astream.wait();

    out->Resize(out_dims);
    out->set_layout(framework::DataLayout::kMKLDNN);
102
    out->set_format(GetMKLDNNFormat(
103
        reorder_dst_memory_p->get_desc().reshape(phi::vectorize(out_dims))));
104 105
  }

106
  void InferInOutShape(const framework::ExecutionContext& ctx,
107 108
                       framework::DDim& x_dims,            // NOLINT
                       framework::DDim& out_dims) const {  // NOLINT
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeSqueezeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeSqueeze2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape kernel doesn not support that operator name"));
    }
  }

  void InferShapeReshapeOp(const framework::ExecutionContext& ctx,
135 136
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
137 138 139 140 141 142 143 144
    auto* x = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
    x_dims = x->dims();
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  void InferShapeReshape2Op(const framework::ExecutionContext& ctx,
145 146
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
147 148 149
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* xshape = ctx.Output<LoDTensor>("XShape");
    auto xshape_dims = xshape->dims();
150
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
151 152 153 154 155 156
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  // in reshape1/2 ops  "ShapeTensor" has highest priority and "Shape" has
  // second highest priority
157 158 159 160
  void ChangeReshapeOutDimsIfNeeded(
      const framework::ExecutionContext& ctx,
      framework::DDim& x_dims,            // NOLINT
      framework::DDim& out_dims) const {  // NOLINT
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    auto list_new_shape_tensor = ctx.MultiInput<Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      auto new_shape = extract_shape(list_new_shape_tensor);
      out_dims = ValidateShape(new_shape, x_dims);
    } else if (ctx.HasInput("Shape")) {
      auto* shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
      auto* shape_data = shape_tensor->data<int>();

      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ValidateShape(shape, x_dims);
    }
  }

  void InferShapeSqueezeOp(const framework::ExecutionContext& ctx,
176 177
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
178 179 180 181 182 183 184
    auto* x = ctx.Input<LoDTensor>("X");
    x_dims = x->dims();
    const auto& axes = ctx.Attr<std::vector<int>>("axes");
    out_dims = GetOutputShape(axes, x_dims, true);
  }

  void InferShapeSqueeze2Op(const framework::ExecutionContext& ctx,
185 186
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
187 188 189
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* xshape = ctx.Output<LoDTensor>("XShape");
    auto xshape_dims = xshape->dims();
190
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
191 192 193 194
    out_dims = out->dims();
  }

  void InferShapeFlattenOp(const framework::ExecutionContext& ctx,
195 196
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
197 198 199
    auto x = ctx.Input<LoDTensor>("X");
    x_dims = x->dims();
    auto axes = ctx.Attr<int>("axis");
200
    out_dims = phi::make_ddim(
L
Leo Chen 已提交
201
        FlattenKernel<phi::CPUContext, float>::GetOutputShape(axes, x_dims));
202 203
  }

204
 protected:
205
  static dnnl::memory::format_tag getPlainFormatTag(const Tensor* tensor) {
206 207
    auto tensor_dims_size = tensor->dims().size();
    PADDLE_ENFORCE_EQ(
208 209
        tensor_dims_size <= 6 && tensor_dims_size >= 1,
        true,
210 211 212 213 214
        platform::errors::InvalidArgument(
            "Dims for squeeze_grad oneDNN op must be in range <1, 6>"));

    switch (tensor_dims_size) {
      case 1:
215
        return dnnl::memory::format_tag::a;
216
      case 2:
217
        return dnnl::memory::format_tag::ab;
218
      case 3:
219
        return dnnl::memory::format_tag::abc;
220
      case 4:
221
        return dnnl::memory::format_tag::abcd;
222
      case 5:
223
        return dnnl::memory::format_tag::abcde;
224
      default:
225
        return dnnl::memory::format_tag::abcdef;
226 227 228 229 230
    }
  }

  static framework::DDim ValidateShape(const std::vector<int>& shape,
                                       const framework::DDim& in_dims) {
231 232
    const int64_t in_size = phi::product(in_dims);
    auto in_dims_vec = phi::vectorize(in_dims);
233 234
    bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                    in_dims_vec.cend(),
235 236 237 238 239 240 241 242 243 244 245 246
                                    [](int64_t i) { return i > 0; });
    // only one dimension can be set to -1, whose size will be automatically
    // infered
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE_EQ(
247 248
            unk_dim_idx,
            -1,
249 250 251
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
252 253
                phi::make_ddim(shape),
                i));
254 255 256
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE_LT(
257 258
            static_cast<int>(i),
            in_dims.size(),
259 260 261 262 263
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
264 265 266 267
                phi::make_ddim(shape),
                i,
                in_dims,
                in_dims.size()));
268 269
      } else {
        PADDLE_ENFORCE_GT(
270 271
            shape[i],
            0,
272 273 274 275
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
                "be negative except one unknown dimension. "
                "But received  shape = [%s], shape[%d] = %d.",
276 277 278
                phi::make_ddim(shape),
                i,
                shape[i]));
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      if (all_positive) {
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(
294 295
            output_shape[unk_dim_idx] * capacity,
            -in_size,
296 297 298 299 300 301
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
                "'shape' is [%s], known capacity of 'shape' is %d.",
302 303 304 305
                in_dims,
                in_size,
                phi::make_ddim(shape),
                capacity));
306 307 308 309 310 311
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
312 313
            capacity,
            in_size,
314 315 316 317 318 319
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
320 321 322 323
                in_dims,
                in_size,
                phi::make_ddim(shape),
                capacity));
324 325
      }
    }
326
    return phi::make_ddim(output_shape);
327 328 329
  }
};

330 331
template <typename T, ReshapeKernelOpName op_name>
class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
332 333 334 335 336 337 338 339 340 341 342 343 344 345
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

346 347 348
    framework::DDim dx_dims;
    InferOutputShapeInGrad(ctx, dx_dims);

349
    auto dout_vec_dims = phi::vectorize(dout->dims());
350

351 352 353
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
354 355 356
        dout_vec_dims,
        framework::TransToProtoVarType(dout->dtype()),
        dout_type,
357
        onednn_engine);
358 359 360 361 362 363 364 365 366 367 368 369

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        dout->format(), platform::to_void_cast(dout->data<T>()));
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        dx, this->getPlainFormatTag(dout), ctx.GetPlace());
    auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                    reorder_dst_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
    astream.wait();

370
    dx->Resize(dx_dims);
371
    dx->set_layout(framework::DataLayout::kMKLDNN);
372
    dx->set_format(GetMKLDNNFormat(
373
        reorder_dst_memory_p->get_desc().reshape(phi::vectorize(dx_dims))));
374 375
  }

376
  void InferOutputShapeInGrad(const framework::ExecutionContext& ctx,
377
                              framework::DDim& x_dims) const {  // NOLINT
378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape grad kernel doesn not support that operator name"));
    }
  }
402

403 404 405
  void InferShapeReshapeSqueezeGradOp(
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
406 407 408
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    dx_dims = dx->dims();
  }
409

410
  void InferShapeReshape2Squeeze2Flatten2GradOp(
411 412
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
413
    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
414
    dx_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
415
  }
416

417
  void InferShapeFlattenGradOp(const framework::ExecutionContext& ctx,
418
                               framework::DDim& dx_dims) const {  // NOLINT
419 420 421 422 423
    dx_dims = ctx.Input<LoDTensor>("X")->dims();
  }
};
}  // namespace operators
}  // namespace paddle
424

425 426
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(
427 428 429
    squeeze,
    MKLDNN,
    paddle::platform::CPUPlace,
430 431 432 433 434
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
435 436 437
    squeeze_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
438 439 440 441 442
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
443 444 445
    squeeze2,
    MKLDNN,
    paddle::platform::CPUPlace,
446 447 448 449 450
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
451 452 453
    squeeze2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
454 455 456 457 458
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
459 460 461
    reshape,
    MKLDNN,
    paddle::platform::CPUPlace,
462 463 464 465 466
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
467 468 469
    reshape_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
470 471 472 473 474
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
475 476 477
    reshape2,
    MKLDNN,
    paddle::platform::CPUPlace,
478 479 480 481 482
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
483 484 485
    reshape2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
486 487 488 489 490
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
491 492 493
    flatten,
    MKLDNN,
    paddle::platform::CPUPlace,
494 495 496 497 498
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
499 500 501
    flatten_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
502 503 504 505 506
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
507 508 509
    flatten2,
    MKLDNN,
    paddle::platform::CPUPlace,
510 511 512 513 514
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten2>);

REGISTER_OP_KERNEL(
515 516 517
    flatten2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
518 519 520
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten2>);