test_inplace.py 16.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np

import paddle
import paddle.fluid.core as core
22
from paddle.fluid.framework import _test_eager_guard, in_dygraph_mode
23 24 25


class TestInplace(unittest.TestCase):
26
    def func_test_forward_version(self):
27 28 29 30 31 32 33
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(np.ones((4, 2, 3)).astype(np.float32))
            self.assertEqual(var.inplace_version, 0)

            var[0] = 1.1
            self.assertEqual(var.inplace_version, 1)

34
            paddle.assign(paddle.ones(shape=[3]), var)
35 36 37 38 39 40 41 42

            # NOTE(liym27): assign(input, output) is an inplace operation for output.
            # There is inplace-related processing for api assign, var.inplace_version should be 2 not 1.
            self.assertEqual(var.inplace_version, 2)

            var[2] = 3
            self.assertEqual(var.inplace_version, 3)

43 44 45 46 47 48
    def test_forward_version(self):
        with _test_eager_guard():
            self.func_test_forward_version()
        self.func_test_forward_version()

    def func_test_backward_error(self):
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            var_b[1:2] = 3.3  # var_b is modified inplace after using it

            var_d = var_b**2

            loss = paddle.nn.functional.relu(var_c + var_d)
64 65 66 67 68
            with self.assertRaisesRegexp(
                    RuntimeError,
                    "received tensor_version:{} != wrapper_version_snapshot:{}".
                    format(1, 0)):
                loss.backward()
69

70 71 72 73 74 75
    def test_backward_error(self):
        with _test_eager_guard():
            self.func_test_backward_error()
        self.func_test_backward_error()

    def func_test_backward_success_1(self):
76 77 78 79 80 81 82 83 84 85 86 87 88 89
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2
            var_b[1:2] = 3  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            loss = var_c.sum()
            loss.backward()

90 91 92 93 94 95
    def test_backward_success_1(self):
        with _test_eager_guard():
            self.func_test_backward_success_1()
        self.func_test_backward_success_1()

    def func_test_backward_success_2(self):
96 97 98 99 100 101 102 103 104 105
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones(shape=[4, 2, 3], dtype="float32")
            var_a.stop_gradient = False

            var_b = var_a**2

            var_b[1:2] = 3  # var_b is modified inplace before using it

106 107 108
            var_c = paddle.add(
                var_b,
                var_b)  # Here, the grad op of sum doesn't use the value of var_b
109 110 111 112 113 114
            loss = var_c.sum()

            var_b[1:2] = 3  # var_b is modified inplace after using it

            loss.backward()

115
    def test_backward_success_2(self):
116 117
        with _test_eager_guard():
            self.func_test_backward_success_2()
118 119
        self.func_test_backward_success_2()

120

121 122 123
class TestDygraphInplace(unittest.TestCase):
    def setUp(self):
        self.init_data()
124
        self.set_np_compare_func()
125 126

    def init_data(self):
127
        self.input_var_numpy = np.random.uniform(-5, 5, [10, 20, 1])
128 129
        self.dtype = "float32"

130 131 132
    def set_np_compare_func(self):
        self.np_compare = np.array_equal

133 134 135 136 137 138
    def non_inplace_api_processing(self, var):
        return paddle.squeeze(var)

    def inplace_api_processing(self, var):
        return paddle.squeeze_(var)

139
    def func_test_inplace_api(self):
140 141 142 143 144 145 146
        var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
        inplace_var = self.inplace_api_processing(var)
        self.assertTrue(id(var) == id(inplace_var))

        inplace_var[0] = 2.
        self.assertTrue(np.array_equal(var.numpy(), inplace_var.numpy()))

147 148 149 150 151 152
    def test_inplace_api(self):
        with _test_eager_guard():
            self.func_test_inplace_api()
        self.func_test_inplace_api()

    def func_test_forward_version(self):
153 154 155 156 157 158 159 160 161 162 163 164 165
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            self.assertEqual(var.inplace_version, 0)

            inplace_var = self.inplace_api_processing(var)
            self.assertEqual(var.inplace_version, 1)

            inplace_var[0] = 2.
            self.assertEqual(var.inplace_version, 2)

            inplace_var = self.inplace_api_processing(inplace_var)
            self.assertEqual(var.inplace_version, 3)

166 167 168 169 170 171
    def test_forward_version(self):
        with _test_eager_guard():
            self.func_test_forward_version()
        self.func_test_forward_version()

    def func_test_leaf_inplace_var_error(self):
172 173 174 175 176 177 178 179 180
        with paddle.fluid.dygraph.guard():
            var = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var.stop_gradient = False

            def leaf_inplace_error():
                self.inplace_api_processing(var)

            self.assertRaises(ValueError, leaf_inplace_error)

181 182 183 184 185 186
    def test_leaf_inplace_var_error(self):
        with _test_eager_guard():
            self.func_test_leaf_inplace_var_error()
        self.func_test_leaf_inplace_var_error()

    def func_test_backward_error(self):
187 188 189 190 191 192 193 194 195 196 197 198 199
        # It raises an error because the inplace operator will result
        # in incorrect gradient computation.
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            # Here, the gradient computation will use the value of var_b
            var_c = var_b**2
            self.inplace_api_processing(var_b)

            loss = paddle.nn.functional.relu(var_c)
200 201 202 203 204
            with self.assertRaisesRegexp(
                    RuntimeError,
                    "received tensor_version:{} != wrapper_version_snapshot:{}".
                    format(1, 0)):
                loss.backward()
205

206 207 208 209 210 211
    def test_backward_error(self):
        with _test_eager_guard():
            self.func_test_backward_error()
        self.func_test_backward_error()

    def func_test_backward_success_1(self):
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
        # var_b is modified inplace before using it, the inplace operator doesn't result
        # in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            # Here, the gradient computation will use the value of var_b
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
227
            grad_var_a_inplace = var_a.grad.numpy()
228 229 230 231 232 233 234 235 236 237

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2
            var_c = self.non_inplace_api_processing(var_b)
            var_d = var_c**2
            loss = var_d.sum()
            loss.backward()
238
            grad_var_a = var_a.grad.numpy()
239

240
        self.assertTrue(self.np_compare(grad_var_a_inplace, grad_var_a))
241

242 243 244 245 246 247
    def test_backward_success_1(self):
        with _test_eager_guard():
            self.func_test_backward_success_1()
        self.func_test_backward_success_1()

    def func_test_backward_success_2(self):
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        # Although var_b is modified inplace after using it, it does not used in gradient computation.
        # The inplace operator doesn't result in incorrect gradient computation.
        grad_var_a, grad_var_a_inplace = 0, 1
        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

            var_c = self.inplace_api_processing(
                var_b)  # var_b is modified inplace before using it

            var_d = var_c + var_c  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_d.sum()

            loss.backward()
264
            grad_var_a_inplace = var_a.grad.numpy()
265 266 267 268 269 270 271

        with paddle.fluid.dygraph.guard():
            var_a = paddle.to_tensor(self.input_var_numpy).astype(self.dtype)
            var_a.stop_gradient = False

            var_b = var_a**2

272
            var_c = self.non_inplace_api_processing(var_b)
273 274 275 276 277

            var_d = var_c + var_c  # Here, the grad op of sum doesn't use the value of var_b
            loss = var_d.sum()

            loss.backward()
278
            grad_var_a = var_a.grad.numpy()
279 280
        self.assertTrue(np.array_equal(grad_var_a_inplace, grad_var_a))

281 282 283 284 285
    def test_backward_success_2(self):
        with _test_eager_guard():
            self.func_test_backward_success_2()
        self.func_test_backward_success_2()

286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302

class TestDygraphInplaceUnsqueeze(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.unsqueeze(var, -1)

    def inplace_api_processing(self, var):
        return paddle.unsqueeze_(var, -1)


class TestDygraphInplaceReshape(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.reshape(var, [-1])

    def inplace_api_processing(self, var):
        return paddle.reshape_(var, [-1])


303 304 305 306 307 308 309 310
class TestDygraphInplaceFlatten(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.flatten()

    def inplace_api_processing(self, var):
        return var.flatten_()


311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
class TestDygraphInplaceScatter(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.array([[1, 1], [2, 2], [3, 3]])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')

        return paddle.scatter(var, index, updates, overwrite=False)

    def inplace_api_processing(self, var):
        index = paddle.to_tensor([2, 1, 0, 1], dtype='int64')
        updates = paddle.to_tensor(
            [[1, 1], [2, 2], [3, 3], [4, 4]], dtype='float32')

        return paddle.scatter_(var, index, updates, overwrite=False)


class TestDygraphInplaceElu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.elu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.elu_(var)


class TestDygraphInplaceRelu(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.relu(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.relu_(var)


class TestDygraphInplaceSoftmax(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.nn.functional.softmax(var)

    def inplace_api_processing(self, var):
        return paddle.nn.functional.softmax_(var)


class TestDygraphInplaceTanh(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return paddle.tanh(var)

    def inplace_api_processing(self, var):
        return paddle.tanh_(var)


363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
class TestDygraphInplaceCeil(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.ceil()

    def inplace_api_processing(self, var):
        return var.ceil_()


class TestDygraphInplaceFloor(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.floor()

    def inplace_api_processing(self, var):
        return var.floor_()


class TestDygraphInplaceExp(TestDygraphInplace):
    def set_np_compare_func(self):
        self.np_compare = np.allclose

    def non_inplace_api_processing(self, var):
        return var.exp()

    def inplace_api_processing(self, var):
        return var.exp_()


class TestDygraphInplaceReciprocal(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.reciprocal()

    def inplace_api_processing(self, var):
        return var.reciprocal_()


class TestDygraphInplaceRound(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.round()

    def inplace_api_processing(self, var):
        return var.round_()


class TestDygraphInplaceSqrt(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.uniform(0, 5, [10, 20, 1])
        self.dtype = "float32"

    def non_inplace_api_processing(self, var):
        return var.sqrt()

    def inplace_api_processing(self, var):
        return var.sqrt_()


class TestDygraphInplaceRsqrt(TestDygraphInplaceSqrt):
    def non_inplace_api_processing(self, var):
        return var.rsqrt()

    def inplace_api_processing(self, var):
        return var.rsqrt_()


class TestDygraphInplaceClip(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.clip(0.6, 1.5)

    def inplace_api_processing(self, var):
        return var.clip_(0.6, 1.5)


class TestDygraphInplaceScale(TestDygraphInplace):
    def non_inplace_api_processing(self, var):
        return var.scale(scale=2.0, bias=3.0)

    def inplace_api_processing(self, var):
        return var.scale_(scale=2.0, bias=3.0)


class TestDygraphInplaceAdd(TestDygraphInplace):
    def init_data(self):
        self.input_var_numpy = np.random.rand(2, 3, 4)
        self.dtype = "float32"
446
        self.input_var_numpy_2 = np.random.rand(2, 3, 4).astype(self.dtype)
447 448

    def non_inplace_api_processing(self, var):
449 450
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.add(input_var_2)
451 452

    def inplace_api_processing(self, var):
453 454
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.add_(input_var_2)
455 456 457 458


class TestDygraphInplaceSubtract(TestDygraphInplaceAdd):
    def non_inplace_api_processing(self, var):
459 460
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.subtract(input_var_2)
461 462

    def inplace_api_processing(self, var):
463 464
        input_var_2 = paddle.to_tensor(self.input_var_numpy_2)
        return var.subtract_(input_var_2)
465 466


467
class TestLossIsInplaceVar(unittest.TestCase):
468
    def func_test_loss_is_inplace_var(self):
469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh_()

            loss.backward()
            inplace_grad_var_a = var_a.grad.numpy()

        with paddle.fluid.dygraph.guard():
            var_a = paddle.ones((2, 2))
            var_a.stop_gradient = False

            var_b = var_a * 2
            loss = var_b.tanh()

            loss.backward()
            grad_var_a = var_a.grad.numpy()

        self.assertTrue(np.array_equal(inplace_grad_var_a, grad_var_a))

491 492 493 494 495
    def test_loss_is_inplace_var(self):
        with _test_eager_guard():
            self.func_test_loss_is_inplace_var()
        self.func_test_loss_is_inplace_var()

496

497
class TestContinuouslyInplace(unittest.TestCase):
498
    def func_test_continuously_inplace(self):
499 500 501 502 503 504 505 506 507 508
        a = paddle.rand([2, 3])
        a.stop_gradient = False
        b = a * 2

        b.reshape_([-1])
        b.reshape_([2, 3])
        b.reshape_([-1])

        b.backward()

509 510 511 512 513
    def test_continuously_inplace(self):
        with _test_eager_guard():
            self.func_test_continuously_inplace()
        self.func_test_continuously_inplace()

514

515 516
if __name__ == '__main__':
    unittest.main()