resnet_block.py 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle.fluid as fluid
from paddle.nn import initializer as I
18
from paddle.nn import Layer
19 20 21
from paddle.fluid.layers import utils
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.param_attr import ParamAttr
22
from paddle import _legacy_C_ops
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

__all__ = ['resnet_basic_block', 'ResNetBasicBlock']


def resnet_basic_block(x,
                       filter1,
                       scale1,
                       bias1,
                       mean1,
                       var1,
                       filter2,
                       scale2,
                       bias2,
                       mean2,
                       var2,
                       filter3,
                       scale3,
                       bias3,
                       mean3,
                       var3,
                       stride1,
                       stride2,
                       stride3,
                       padding1,
                       padding2,
                       padding3,
                       dilation1,
                       dilation2,
                       dilation3,
                       groups,
                       momentum,
                       eps,
                       data_format,
                       has_shortcut,
                       use_global_stats=None,
                       training=False,
                       trainable_statistics=False,
                       find_conv_max=True):

C
Chen Weihang 已提交
62
    if fluid.framework._non_static_mode():
63 64 65 66 67 68 69 70 71 72 73
        attrs = ('stride1', stride1, 'stride2', stride2, 'stride3', stride3,
                 'padding1', padding1, 'padding2', padding2, 'padding3',
                 padding3, 'dilation1', dilation1, 'dilation2', dilation2,
                 'dilation3', dilation3, 'group', groups, 'momentum', momentum,
                 'epsilon', eps, 'data_format', data_format, 'has_shortcut',
                 has_shortcut, 'use_global_stats', use_global_stats,
                 "trainable_statistics", trainable_statistics, 'is_test',
                 not training, 'act_type', "relu", 'find_conv_input_max',
                 find_conv_max)

        out, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _, _ = \
C
Chen Weihang 已提交
74
                _legacy_C_ops.resnet_basic_block(x, filter1, scale1, bias1, mean1, var1, filter2, scale2, bias2, mean2, var2, \
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
                filter3, scale3, bias3, mean3, var3, mean1, var1, mean2, var2, mean3, var3, *attrs)
        return out
    helper = LayerHelper('resnet_basic_block', **locals())
    bn_param_dtype = fluid.core.VarDesc.VarType.FP32
    max_dtype = fluid.core.VarDesc.VarType.FP32

    out = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                    stop_gradient=True)
    conv1 = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                      stop_gradient=True)
    saved_mean1 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    saved_invstd1 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    running_mean1 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True) if mean1 is None else mean1
    running_var1 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True) if var1 is None else var1
    conv2 = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                      stop_gradient=True)
    conv2_input = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                            stop_gradient=True)
    saved_mean2 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    saved_invstd2 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    running_mean2 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True) if mean2 is None else mean2
    running_var2 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True) if var2 is None else var2
    conv3 = helper.create_variable_for_type_inference(dtype=x.dtype,
                                                      stop_gradient=True)
    saved_mean3 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    saved_invstd3 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True)
    running_mean3 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True) if mean3 is None else mean3
    running_var3 = helper.create_variable_for_type_inference(
        dtype=bn_param_dtype, stop_gradient=True) if var3 is None else var3
    conv1_input_max = helper.create_variable_for_type_inference(
        dtype=max_dtype, stop_gradient=True)
    conv1_filter_max = helper.create_variable_for_type_inference(
        dtype=max_dtype, stop_gradient=True)
    conv2_input_max = helper.create_variable_for_type_inference(
        dtype=max_dtype, stop_gradient=True)
    conv2_filter_max = helper.create_variable_for_type_inference(
        dtype=max_dtype, stop_gradient=True)
    conv3_input_max = helper.create_variable_for_type_inference(
        dtype=max_dtype, stop_gradient=True)
    conv3_filter_max = helper.create_variable_for_type_inference(
        dtype=max_dtype, stop_gradient=True)

    inputs = {
        'X': x,
        'Filter1': filter1,
        'Scale1': scale1,
        'Bias1': bias1,
        'Mean1': mean1,
        'Var1': var1,
        'Filter2': filter2,
        'Scale2': scale2,
        'Bias2': bias2,
        'Mean2': mean2,
        'Var2': var2,
        'Filter3': filter3,
        'Scale3': scale3,
        'Bias3': bias3,
        'Mean3': mean3,
        'Var3': var3,
    }

    attrs = {
        'stride1': stride1,
        'stride2': stride2,
        'stride3': stride3,
        'padding1': padding1,
        'padding2': padding2,
        'padding3': padding3,
        'dilation1': dilation1,
        'dilation2': dilation2,
        'dilation3': dilation3,
        'group': groups,
        'momentum': momentum,
        'epsilon': eps,
        'data_format': data_format,
        'has_shortcut': has_shortcut,
        'use_global_stats': use_global_stats,
        "trainable_statistics": trainable_statistics,
        'is_test': not training,
        'act_type': "relu",
        'find_conv_input_max': find_conv_max
    }

    outputs = {
        'Y': out,
        'Conv1': conv1,
        'SavedMean1': saved_mean1,
        'SavedInvstd1': saved_invstd1,
        'Mean1Out': running_mean1,
        'Var1Out': running_var1,
        'Conv2': conv2,
        'SavedMean2': saved_mean2,
        'SavedInvstd2': saved_invstd2,
        'Mean2Out': running_mean2,
        'Var2Out': running_var2,
        'Conv2Input': conv2_input,
        'Conv3': conv3,
        'SavedMean3': saved_mean3,
        'SavedInvstd3': saved_invstd3,
        'Mean3Out': running_mean3,
        'Var3Out': running_var3,
        'MaxInput1': conv1_input_max,
        'MaxFilter1': conv1_filter_max,
        'MaxInput2': conv2_input_max,
        'MaxFilter2': conv2_filter_max,
        'MaxInput3': conv3_input_max,
        'MaxFilter3': conv3_filter_max,
    }
    helper.append_op(type='resnet_basic_block',
                     inputs=inputs,
                     outputs=outputs,
                     attrs=attrs)
    return out


class ResNetBasicBlock(Layer):
202
    r"""
203
    ResNetBasicBlock is designed for optimize the performence of the basic unit of ssd resnet block.
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    If has_shortcut = True, it can calculate 3 Conv2D, 3 BatchNorm and 2 ReLU in one time.
    If has_shortcut = False, it can calculate 2 Conv2D, 2 BatchNorm and 2 ReLU in one time. In this
    case the shape of output is same with input.


    Args:
        num_channels (int): The number of input image channel.
        num_filter (int): The number of filter. It is as same as the output image channel.
        filter_size (int|list|tuple): The filter size. If filter_size
            is a tuple, it must contain two integers, (filter_size_height,
            filter_size_width). Otherwise, filter_size_height = filter_size_width =\
            filter_size.
        stride (int, optional): The stride size. It means the stride in convolution.
            If stride is a tuple, it must contain two integers, (stride_height, stride_width).
            Otherwise, stride_height = stride_width = stride. Default: stride = 1.
        act (str, optional): Activation type, if it is set to None, activation is not appended.
            Default: None
        momentum (float, optional): The value used for the moving_mean and
            moving_var computation. This should be a float number or a Tensor with
            shape [1] and data type as float32. The updated formula is:
            :math:`moving\_mean = moving\_mean * momentum + new\_mean * (1. - momentum)`
            :math:`moving\_var = moving\_var * momentum + new\_var * (1. - momentum)`
            Default is 0.9.
        eps (float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. Now is only support `"NCHW"`, the data is stored in
            the order of: `[batch_size, input_channels, input_height, input_width]`.
        has_shortcut (bool, optional): Whether to calculate CONV3 and BN3. Default: False.
        use_global_stats (bool, optional): Whether to use global mean and
            variance. In inference or test mode, set use_global_stats to true
            or is_test to true, and the behavior is equivalent.
            In train mode, when setting use_global_stats True, the global mean
            and variance are also used during train period. Default: False.
        is_test (bool, optional): A flag indicating whether it is in
            test phrase or not. Default: False.
        filter_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
            of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as param_attr. Default: None.
        scale_attr (ParamAttr|None): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm will create ParamAttr
            as param_attr, the name of scale can be set in ParamAttr. If the Initializer of the param_attr is not set,
            the parameter is initialized with Xavier. Default: None.
        bias_attr (ParamAttr|None): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            Default: None.
        moving_mean_name (str, optional): The name of moving_mean which store the global Mean. If it
            is set to None, batch_norm will save global mean with a random name, otherwise, batch_norm
            will save global mean with the string. Default: None.
        moving_var_name (str, optional): The name of the moving_variance which store the global Variance.
            If it is set to None, batch_norm will save global variance with a random name, otherwise, batch_norm
            will save global variance with the string. Default: None.
        padding (int, optional): The padding size. It is only spupport padding_height = padding_width = padding.
            Default: padding = 0.
        dilation (int, optional): The dilation size. It means the spacing between the kernel
            points. It is only spupport dilation_height = dilation_width = dilation.
            Default: dilation = 1.
        trainable_statistics (bool, optional): Whether to calculate mean and var in eval mode. In eval mode, when
            setting trainable_statistics True, mean and variance will be calculated by current batch statistics.
            Default: False.
        find_conv_max (bool, optional): Whether to calculate max value of each conv2d. Default: True.


    Returns:
        A Tensor representing the ResNetBasicBlock, whose data type is the same with input.


    Examples:

        .. code-block:: python

            # required: xpu
            import paddle
            from paddle.incubate.xpu.resnet_block import ResNetBasicBlock

            ch_in = 4
            ch_out = 8
            x = paddle.uniform((2, ch_in, 16, 16), dtype='float32', min=-1., max=1.)
            resnet_basic_block = ResNetBasicBlock(num_channels1=ch_in,
                                                num_filter1=ch_out,
                                                filter1_size=3,
                                                num_channels2=ch_out,
                                                num_filter2=ch_out,
                                                filter2_size=3,
                                                num_channels3=ch_in,
                                                num_filter3=ch_out,
                                                filter3_size=1,
                                                stride1=1,
                                                stride2=1,
                                                stride3=1,
                                                act='relu',
                                                padding1=1,
                                                padding2=1,
                                                padding3=0,
                                                has_shortcut=True)
            out = resnet_basic_block.forward(x)

            print(out.shape) # [2, 8, 16, 16]
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
    """

    def __init__(self,
                 num_channels1,
                 num_filter1,
                 filter1_size,
                 num_channels2,
                 num_filter2,
                 filter2_size,
                 num_channels3,
                 num_filter3,
                 filter3_size,
                 stride1=1,
                 stride2=1,
                 stride3=1,
                 act='relu',
                 momentum=0.9,
                 eps=1e-5,
                 data_format='NCHW',
                 has_shortcut=False,
                 use_global_stats=False,
                 is_test=False,
                 filter1_attr=None,
                 scale1_attr=None,
                 bias1_attr=None,
                 moving_mean1_name=None,
                 moving_var1_name=None,
                 filter2_attr=None,
                 scale2_attr=None,
                 bias2_attr=None,
                 moving_mean2_name=None,
                 moving_var2_name=None,
                 filter3_attr=None,
                 scale3_attr=None,
                 bias3_attr=None,
                 moving_mean3_name=None,
                 moving_var3_name=None,
                 padding1=0,
                 padding2=0,
                 padding3=0,
                 dilation1=1,
                 dilation2=1,
                 dilation3=1,
                 trainable_statistics=False,
                 find_conv_max=True):
        super(ResNetBasicBlock, self).__init__()
        self._stride1 = stride1
        self._stride2 = stride2
        self._kernel1_size = utils.convert_to_list(filter1_size, 2,
                                                   'filter1_size')
        self._kernel2_size = utils.convert_to_list(filter2_size, 2,
                                                   'filter2_size')
        self._dilation1 = dilation1
        self._dilation2 = dilation2
        self._padding1 = padding1
        self._padding2 = padding2
        self._groups = 1
        self._momentum = momentum
        self._eps = eps
        self._data_format = data_format
        self._act = act
        self._has_shortcut = has_shortcut
        self._use_global_stats = use_global_stats
        self._is_test = is_test
        self._trainable_statistics = trainable_statistics
        self._find_conv_max = find_conv_max

        if has_shortcut:
            self._kernel3_size = utils.convert_to_list(filter3_size, 2,
                                                       'filter3_size')
            self._padding3 = padding3
            self._stride3 = stride3
            self._dilation3 = dilation3
        else:
            self._kernel3_size = None
            self._padding3 = 1
            self._stride3 = 1
            self._dilation3 = 1

        # check format
        valid_format = {'NCHW'}
        if data_format not in valid_format:
            raise ValueError(
                "conv_format must be one of {}, but got conv_format={}".format(
                    valid_format, data_format))

        def _get_default_param_initializer(channels, kernel_size):
            filter_elem_num = np.prod(kernel_size) * channels
            std = (2.0 / filter_elem_num)**0.5
            return I.Normal(0.0, std)

        # init filter
        bn_param_dtype = fluid.core.VarDesc.VarType.FP32
        bn1_param_shape = [1, 1, num_filter1]
        bn2_param_shape = [1, 1, num_filter2]
        filter1_shape = [num_filter1, num_channels1, filter1_size, filter1_size]
        filter2_shape = [num_filter2, num_channels2, filter2_size, filter2_size]

        self.filter_1 = self.create_parameter(
            shape=filter1_shape,
            attr=filter1_attr,
            default_initializer=_get_default_param_initializer(
                num_channels1, self._kernel1_size))
        self.scale_1 = self.create_parameter(
            shape=bn1_param_shape,
            attr=scale1_attr,
            dtype=bn_param_dtype,
            default_initializer=I.Constant(1.0))
        self.bias_1 = self.create_parameter(shape=bn1_param_shape,
                                            attr=bias1_attr,
                                            dtype=bn_param_dtype,
                                            is_bias=True)
        self.mean_1 = self.create_parameter(attr=ParamAttr(
            name=moving_mean1_name,
            initializer=I.Constant(0.0),
            trainable=False),
                                            shape=bn1_param_shape,
                                            dtype=bn_param_dtype)
        self.mean_1.stop_gradient = True
        self.var_1 = self.create_parameter(
            attr=ParamAttr(name=moving_var1_name,
                           initializer=I.Constant(1.0),
                           trainable=False),
            shape=bn1_param_shape,
            dtype=bn_param_dtype)
        self.var_1.stop_gradient = True

        self.filter_2 = self.create_parameter(
            shape=filter2_shape,
            attr=filter2_attr,
            default_initializer=_get_default_param_initializer(
                num_channels2, self._kernel2_size))
        self.scale_2 = self.create_parameter(
            shape=bn2_param_shape,
            attr=scale2_attr,
            dtype=bn_param_dtype,
            default_initializer=I.Constant(1.0))
        self.bias_2 = self.create_parameter(shape=bn2_param_shape,
                                            attr=bias2_attr,
                                            dtype=bn_param_dtype,
                                            is_bias=True)
        self.mean_2 = self.create_parameter(attr=ParamAttr(
            name=moving_mean2_name,
            initializer=I.Constant(0.0),
            trainable=False),
                                            shape=bn2_param_shape,
                                            dtype=bn_param_dtype)
        self.mean_2.stop_gradient = True
        self.var_2 = self.create_parameter(
            attr=ParamAttr(name=moving_var2_name,
                           initializer=I.Constant(1.0),
                           trainable=False),
            shape=bn2_param_shape,
            dtype=bn_param_dtype)
        self.var_2.stop_gradient = True

        if has_shortcut:
            bn3_param_shape = [1, 1, num_filter3]
            filter3_shape = [
                num_filter3, num_channels3, filter3_size, filter3_size
            ]
            self.filter_3 = self.create_parameter(
                shape=filter3_shape,
                attr=filter3_attr,
                default_initializer=_get_default_param_initializer(
                    num_channels3, self._kernel3_size))
            self.scale_3 = self.create_parameter(
                shape=bn3_param_shape,
                attr=scale3_attr,
                dtype=bn_param_dtype,
                default_initializer=I.Constant(1.0))
            self.bias_3 = self.create_parameter(shape=bn3_param_shape,
                                                attr=bias3_attr,
                                                dtype=bn_param_dtype,
                                                is_bias=True)
            self.mean_3 = self.create_parameter(attr=ParamAttr(
                name=moving_mean3_name,
                initializer=I.Constant(0.0),
                trainable=False),
                                                shape=bn3_param_shape,
                                                dtype=bn_param_dtype)
            self.mean_3.stop_gradient = True
            self.var_3 = self.create_parameter(attr=ParamAttr(
                name=moving_var3_name,
                initializer=I.Constant(1.0),
                trainable=False),
                                               shape=bn3_param_shape,
                                               dtype=bn_param_dtype)
            self.var_3.stop_gradient = True
        else:
            self.filter_3 = None
            self.scale_3 = None
            self.bias_3 = None
            self.mean_3 = None
            self.var_3 = None

    def forward(self, x):
        out = resnet_basic_block(
            x,
            self.filter_1,
            self.scale_1,
            self.bias_1,
            self.mean_1,
            self.var_1,
            self.filter_2,
            self.scale_2,
            self.bias_2,
            self.mean_2,
            self.var_2,
            self.filter_3,
            self.scale_3,
            self.bias_3,
            self.mean_3,
            self.var_3,
            self._stride1,
            self._stride2,
            self._stride3,
            self._padding1,
            self._padding2,
            self._padding3,
            self._dilation1,
            self._dilation2,
            self._dilation3,
            self._groups,
            self._momentum,
            self._eps,
            self._data_format,
            self._has_shortcut,
            use_global_stats=self._use_global_stats,
            training=self.training,
            trainable_statistics=self._trainable_statistics,
            find_conv_max=self._find_conv_max)
        return out