executor_thread_worker.cc 21.6 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor_thread_worker.h"
H
heqiaozhi 已提交
16
#include <algorithm>
W
Wang Guibao 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"

#include "gflags/gflags.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/inference/io.h"
30
#include "paddle/fluid/platform/cpu_helper.h"
W
Wang Guibao 已提交
31
#include "paddle/fluid/platform/place.h"
32
#include "paddle/fluid/platform/timer.h"
W
Wang Guibao 已提交
33 34 35 36
#include "paddle/fluid/pybind/pybind.h"
namespace paddle {
namespace framework {

H
heqiaozhi 已提交
37
#ifdef PADDLE_WITH_PSLIB
38
int DensePullThread::start() {
D
dongdaxiang 已提交
39 40 41
  _running = true;
  _t = std::thread(&DensePullThread::run, this);
  return 0;
42 43 44
}

void DensePullThread::run() {
D
dongdaxiang 已提交
45 46 47 48 49 50 51 52 53 54 55
  while (_running) {
    _pull_dense_status.resize(0);
    for (auto& t : _dense_variable_name) {
      if (check_update_param(t.first)) {
        auto status = pull_dense(t.first);
        _pull_dense_status.emplace_back(std::move(status));
        reset_thread_version(t.first);
      }
    }
    if (_pull_dense_status.size() != 0) {
      wait_all();
56
    }
H
heqiaozhi 已提交
57

D
dongdaxiang 已提交
58 59
    usleep(_sleep_time_ms * 1000);
  }
60 61
}
bool DensePullThread::check_update_param(uint64_t table_id) {
D
dongdaxiang 已提交
62 63 64 65 66 67 68 69 70 71
  {
    std::lock_guard<std::mutex> lock(_mutex_for_version);
    auto& version = _training_versions[table_id];
    _current_version[table_id] =
        *(std::min_element(version.begin(), version.end()));
  }
  if (_current_version[table_id] - _last_versions[table_id] < _threshold) {
    return false;
  }
  return true;
72 73 74
}

void DensePullThread::reset_thread_version(uint64_t table_id) {
D
dongdaxiang 已提交
75 76
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _last_versions[table_id] = _current_version[table_id];
77 78
}
std::future<int32_t> DensePullThread::pull_dense(uint64_t table_id) {
D
dongdaxiang 已提交
79 80 81 82
  auto& regions = _regions[table_id];
  regions.clear();
  auto& variables = _dense_variable_name[table_id];
  regions.resize(variables.size());
H
heqiaozhi 已提交
83

D
dongdaxiang 已提交
84 85 86 87
  for (auto i = 0u; i < variables.size(); ++i) {
    auto& t = variables[i];
    Variable* var = _root_scope->FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
88

D
dongdaxiang 已提交
89 90 91 92 93
    float* w = tensor->data<float>();
    paddle::ps::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
  return _ps_client->pull_dense(regions.data(), regions.size(), table_id);
94 95 96
}

void DensePullThread::wait_all() {
D
dongdaxiang 已提交
97 98 99 100
  for (auto& t : _pull_dense_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
H
heqiaozhi 已提交
101
      LOG(WARNING) << "pull dense failed times:" << ++_pull_dense_fail_times;
102
    }
D
dongdaxiang 已提交
103
  }
H
heqiaozhi 已提交
104

D
dongdaxiang 已提交
105 106 107 108
  if (_pull_dense_fail_times > 20) {
    LOG(FATAL) << "pull dense failed times more than 20 times";
    exit(-1);
  }
H
heqiaozhi 已提交
109

D
dongdaxiang 已提交
110
  _pull_dense_status.resize(0);
111 112
}

H
heqiaozhi 已提交
113 114
void DensePullThread::increase_thread_version(int thread_id,
                                              uint64_t table_id) {
D
dongdaxiang 已提交
115 116
  std::lock_guard<std::mutex> lock(_mutex_for_version);
  _training_versions[table_id][thread_id]++;
117
}
D
dongdaxiang 已提交
118
#endif
H
heqiaozhi 已提交
119

W
Wang Guibao 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
  auto& block = program.Block(0);
  op_names_.clear();
  for (auto& op_desc : block.AllOps()) {
    std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
    op_names_.push_back(op_desc->Type());
    OperatorBase* local_op_ptr = local_op.release();
    ops_.push_back(local_op_ptr);
    continue;
  }
}

void ExecutorThreadWorker::CreateThreadResource(
    const framework::ProgramDesc& program,
    const paddle::platform::Place& place) {
  CreateThreadScope(program);
  CreateThreadOperators(program);
  SetMainProgram(program);
  SetPlace(place);
}

void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
  auto& block = program.Block(0);

  PADDLE_ENFORCE_NOT_NULL(
      root_scope_, "root_scope should be set before creating thread scope");

  thread_scope_ = &root_scope_->NewScope();
  for (auto& var : block.AllVars()) {
    if (var->Persistable()) {
      auto* ptr = root_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    } else {
      auto* ptr = thread_scope_->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
    }
  }
}

void ExecutorThreadWorker::SetDataFeed(
    const std::shared_ptr<DataFeed>& datafeed) {
  thread_reader_ = datafeed;
}

void ExecutorThreadWorker::BindingDataFeedMemory() {
  const std::vector<std::string>& input_feed =
      thread_reader_->GetUseSlotAlias();
  for (auto name : input_feed) {
    thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
  }
}

void ExecutorThreadWorker::SetFetchVarNames(
    const std::vector<std::string>& fetch_var_names) {
  fetch_var_names_.clear();
  fetch_var_names_.insert(fetch_var_names_.end(), fetch_var_names.begin(),
                          fetch_var_names.end());
}

void ExecutorThreadWorker::SetDevice() {
#if defined _WIN32 || defined __APPLE__
  return;
#else
  static unsigned concurrency_cap = std::thread::hardware_concurrency();
184
  LOG(WARNING) << "concurrency capacity " << concurrency_cap;
W
Wang Guibao 已提交
185 186
  int thread_id = this->thread_id_;

T
Tao Luo 已提交
187
  if (static_cast<unsigned>(thread_id) < concurrency_cap) {
W
Wang Guibao 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    unsigned proc = thread_id;

    cpu_set_t mask;
    CPU_ZERO(&mask);
    CPU_SET(proc, &mask);

    if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
      VLOG(1) << "WARNING: Failed to set thread affinity for thread "
              << thread_id;
    } else {
      CPU_ZERO(&mask);
      if ((0 != sched_getaffinity(0, sizeof(mask), &mask)) ||
          (CPU_ISSET(proc, &mask) == 0)) {
        VLOG(3) << "WARNING: Failed to set thread affinity for thread "
                << thread_id;
      }
    }
  } else {
    VLOG(1) << "WARNING: Failed to set thread affinity for thread "
            << thread_id;
  }
#endif
}

template <typename T>
void print_lod_tensor(std::string var_name, const LoDTensor& lod_tensor) {
  auto inspect = lod_tensor.data<T>();
  auto element_num = lod_tensor.numel();

  std::ostringstream sstream;
  sstream << var_name << " (element num " << element_num << "): [";
  sstream << inspect[0];
  for (int j = 1; j < element_num; ++j) {
    sstream << " " << inspect[j];
  }
  sstream << "]";

  std::cout << sstream.str() << std::endl;
}

Y
Yu Yang 已提交
228 229
static void print_fetch_var(Scope* scope, const std::string& var_name) {
  auto& tensor = scope->FindVar(var_name)->Get<LoDTensor>();
W
Wang Guibao 已提交
230

Y
Yu Yang 已提交
231 232 233 234 235 236 237 238 239 240
#define PrintLoDTensorCallback(cpp_type, proto_type) \
  do {                                               \
    if (tensor.type() == proto_type) {               \
      print_lod_tensor<cpp_type>(var_name, tensor);  \
      return;                                        \
    }                                                \
  } while (0)

  _ForEachDataType_(PrintLoDTensorCallback);
  VLOG(1) << "print_fetch_var: unrecognized data type:" << tensor.type();
W
Wang Guibao 已提交
241 242
}

243 244 245 246
void ExecutorThreadWorker::TrainFilesWithTimer() {
  platform::SetNumThreads(1);
  SetDevice();
  thread_reader_->Start();
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
  std::vector<double> op_total_time;
  std::vector<std::string> op_name;
  for (auto& op : ops_) {
    op_name.push_back(op->Type());
  }
  op_total_time.resize(ops_.size());
  for (size_t i = 0; i < op_total_time.size(); ++i) {
    op_total_time[i] = 0.0;
  }
  platform::Timer timeline;
  double total_time = 0.0;
  double read_time = 0.0;
  int cur_batch;
  int batch_cnt = 0;
  timeline.Start();
  while ((cur_batch = thread_reader_->Next()) > 0) {
    timeline.Pause();
    read_time += timeline.ElapsedSec();
    total_time += timeline.ElapsedSec();
    for (size_t i = 0; i < ops_.size(); ++i) {
      timeline.Start();
      ops_[i]->Run(*thread_scope_, place_);
      timeline.Pause();
      op_total_time[i] += timeline.ElapsedSec();
      total_time += timeline.ElapsedSec();
    }
    ++batch_cnt;
    thread_scope_->DropKids();
276
    if (thread_id_ == 0) {
D
dongdaxiang 已提交
277
      if (batch_cnt > 0 && batch_cnt % 100 == 0) {
278 279 280 281 282 283 284 285 286
        for (size_t i = 0; i < ops_.size(); ++i) {
          fprintf(stderr, "op_name:[%zu][%s], op_mean_time:[%fs]\n", i,
                  op_name[i].c_str(), op_total_time[i] / batch_cnt);
        }
        fprintf(stderr, "mean read time: %fs\n", read_time / batch_cnt);
        int fetch_var_num = fetch_var_names_.size();
        for (int i = 0; i < fetch_var_num; ++i) {
          print_fetch_var(thread_scope_, fetch_var_names_[i]);
        }
287 288 289 290 291 292
      }
    }
    timeline.Start();
  }
}

W
Wang Guibao 已提交
293
void ExecutorThreadWorker::TrainFiles() {
294 295
  platform::SetNumThreads(1);

W
Wang Guibao 已提交
296
  // todo: configurable
D
dongdaxiang 已提交
297
  // SetDevice();
W
Wang Guibao 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    for (auto& op : ops_) {
      op->Run(*thread_scope_, place_);
    }

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

void ExecutorThreadWorker::SetThreadId(int tid) { thread_id_ = tid; }

void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
  place_ = place;
}

void ExecutorThreadWorker::SetMainProgram(
    const ProgramDesc& main_program_desc) {
  main_program_.reset(new ProgramDesc(main_program_desc));
}

void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
  root_scope_ = g_scope;
}

H
heqiaozhi 已提交
341
#ifdef PADDLE_WITH_PSLIB
342
//  AsyncExecutor
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370
void AsyncExecutorThreadWorker::TrainFiles() {
  SetDevice();

  int fetch_var_num = fetch_var_names_.size();
  fetch_values_.clear();
  fetch_values_.resize(fetch_var_num);

  thread_reader_->Start();

  int cur_batch;
  int batch_cnt = 0;
  while ((cur_batch = thread_reader_->Next()) > 0) {
    // executor run here
    TrainOneNetwork();

    ++batch_cnt;
    thread_scope_->DropKids();

    if (debug_ == false || thread_id_ != 0) {
      continue;
    }

    for (int i = 0; i < fetch_var_num; ++i) {
      print_fetch_var(thread_scope_, fetch_var_names_[i]);
    }  // end for (int i = 0...)
  }    // end while ()
}

371 372
void AsyncExecutorThreadWorker::SetPSlibPtr(
    std::shared_ptr<paddle::distributed::PSlib> pslib_ptr) {
D
dongdaxiang 已提交
373
  _pslib_ptr = pslib_ptr;
374
}
375

376 377
void AsyncExecutorThreadWorker::SetPullDenseThread(
    std::shared_ptr<DensePullThread> dpt) {
D
dongdaxiang 已提交
378
  _pull_dense_thread = dpt;
379
}
380

381
void AsyncExecutorThreadWorker::TrainOneNetwork() {
D
dongdaxiang 已提交
382
  PrepareParams();
H
heqiaozhi 已提交
383

D
dongdaxiang 已提交
384 385 386 387 388 389
  for (auto& op : ops_) {
    if (op->Type().find("sgd") != std::string::npos) {
      continue;
    }
    bool need_skip = false;
    for (auto t = 0u; t < _param_config->skip_op.size(); ++t) {
H
heqiaozhi 已提交
390
      if (op->Type().find(_param_config->skip_op[t]) != std::string::npos) {
D
dongdaxiang 已提交
391 392 393 394 395 396
        need_skip = true;
        break;
      }
    }
    if (!need_skip) {
      op->Run(*thread_scope_, place_);
397
    }
D
dongdaxiang 已提交
398 399
  }
  UpdateParams();
400 401
}

402 403
void AsyncExecutorThreadWorker::SetParamConfig(
    AsyncWorkerParamConfig* param_config) {
D
dongdaxiang 已提交
404
  _param_config = param_config;
405 406 407
}

void AsyncExecutorThreadWorker::PrepareParams() {
D
dongdaxiang 已提交
408 409 410 411 412 413 414 415 416
  for (auto table_id : _param_config->sparse_table_id) {
    PullSparse(table_id);
    for (auto& t : _pull_sparse_status) {
      t.wait();
      auto status = t.get();
      if (status != 0) {
        LOG(ERROR) << "pull sparse failed, status[" << status << "]";
        exit(-1);
      }
417
    }
D
dongdaxiang 已提交
418 419
  }
  _pull_sparse_status.resize(0);
420

D
dongdaxiang 已提交
421 422 423
  for (auto table_id : _param_config->sparse_table_id) {
    FillSparse(table_id);
  }
424 425 426
}

void AsyncExecutorThreadWorker::UpdateParams() {
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
  for (auto i : _param_config->sparse_table_id) {
    PushSparse(i);
  }
  for (auto i : _param_config->dense_table_id) {
    PushDense(i);
  }
  int32_t tmp_push_dense_wait_times = -1;
  int32_t tmp_push_sparse_wait_times = -1;
  static uint32_t push_dense_wait_times =
      static_cast<uint32_t>(tmp_push_dense_wait_times);
  static uint32_t push_sparse_wait_times =
      static_cast<uint32_t>(tmp_push_sparse_wait_times);

  if (_push_dense_status.size() >= push_dense_wait_times) {
    for (auto& t : _push_dense_status) {
      t.wait();
443
    }
444 445 446 447 448 449 450 451
    _push_dense_status.resize(0);
  }
  if (tmp_push_dense_wait_times == -1) {
    _push_dense_status.resize(0);
  }
  if (_push_sparse_status.size() >= push_sparse_wait_times) {
    for (auto& t : _push_sparse_status) {
      t.wait();
H
heqiaozhi 已提交
452
    }
453 454 455 456 457 458 459 460
    _push_sparse_status.resize(0);
  }
  if (tmp_push_sparse_wait_times == -1) {
    _push_sparse_status.resize(0);
  }
  for (auto dense_table_id : _param_config->dense_table_id) {
    _pull_dense_thread->increase_thread_version(thread_id_, dense_table_id);
  }
461 462 463
}

void AsyncExecutorThreadWorker::PushDense(int table_id) {
D
dongdaxiang 已提交
464 465 466 467 468 469 470 471 472 473
  std::vector<paddle::ps::Region> regions;
  for (auto& t : _param_config->dense_gradient_variable_name[table_id]) {
    Variable* var = thread_scope_->FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int count = tensor->numel();
    float* g = tensor->data<float>();
    paddle::ps::Region reg(g, count);
    regions.emplace_back(std::move(reg));
  }
H
heqiaozhi 已提交
474 475 476

  auto status = _pslib_ptr->_worker_ptr->push_dense(regions.data(),
                                                    regions.size(), table_id);
D
dongdaxiang 已提交
477
  _push_dense_status.push_back(std::move(status));
478 479 480
}

void AsyncExecutorThreadWorker::PullSparse(int table_id) {
481 482 483 484 485 486 487
  auto& features = _features[table_id];
  auto& feature_value = _feature_value[table_id];
  auto fea_dim = _param_config->fea_dim;
  // slot id starts from 1
  features.clear();
  features.resize(0);
  features.reserve(MAX_FEASIGN_NUM);
H
heqiaozhi 已提交
488
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
489 490 491 492 493 494 495 496 497 498 499 500 501
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      // todo(colourful-tree): current trick - filter feasign=use_slot_mod(
      // bug: datafeed fill use_slot_mod for empty slot)
      if (ids[i] == 0u) {
        continue;
      }
      features.push_back(static_cast<uint64_t>(ids[i]));
H
heqiaozhi 已提交
502
    }
503
  }
H
heqiaozhi 已提交
504 505
  check_pull_push_memory(features, &feature_value, fea_dim);

506 507 508 509
  std::vector<float*> pull_feature_value;
  for (auto i = 0u; i < features.size(); ++i) {
    pull_feature_value.push_back(feature_value[i].data());
  }
H
heqiaozhi 已提交
510

511 512 513
  auto status = _pslib_ptr->_worker_ptr->pull_sparse(
      pull_feature_value.data(), table_id, features.data(), features.size());
  _pull_sparse_status.push_back(std::move(status));
H
heqiaozhi 已提交
514

515
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
516
  check_pull_push_memory(features, &push_g, fea_dim);
517
  collect_feasign_info(table_id);
518 519 520
}

void AsyncExecutorThreadWorker::FillSparse(int table_id) {
521 522 523 524
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& fea_value = _feature_value[table_id];
H
heqiaozhi 已提交
525

526
  CHECK(features.size() > 0) << "feature size check failed";
H
heqiaozhi 已提交
527

528
  auto fea_idx = 0u;
H
heqiaozhi 已提交
529

530
  std::vector<float> init_value(fea_dim);
H
heqiaozhi 已提交
531 532

  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
533 534 535 536 537 538 539 540 541
  // slot_idx = 0 is label TODO
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    int64_t* ids = tensor->data<int64_t>();
    int len = tensor->numel();
    Variable* var_emb = thread_scope_->FindVar(
        _param_config->slot_input_vec[table_id][slot_idx - 1]);
    LoDTensor* tensor_emb = var_emb->GetMutable<LoDTensor>();
H
heqiaozhi 已提交
542 543
    float* ptr =
        tensor_emb->mutable_data<float>({len, slot_dim}, platform::CPUPlace());
544 545
    memset(ptr, 0, sizeof(float) * len * slot_dim);
    auto& tensor_lod = tensor->lod()[0];
H
heqiaozhi 已提交
546

547 548
    LoD data_lod{tensor_lod};
    tensor_emb->set_lod(data_lod);
H
heqiaozhi 已提交
549

550 551
    for (auto index = 0u; index < len; ++index) {
      if (ids[index] == 0u) {
H
heqiaozhi 已提交
552 553
        memcpy(ptr + slot_dim * index, init_value.data() + 2,
               sizeof(float) * slot_dim);
554 555
        continue;
      }
H
heqiaozhi 已提交
556 557
      memcpy(ptr + slot_dim * index, fea_value[fea_idx].data() + 2,
             sizeof(float) * slot_dim);
558
      fea_idx++;
559
    }
560
  }
561 562 563
}

void AsyncExecutorThreadWorker::PushSparse(int table_id) {
564 565 566 567
  auto slot_dim = _param_config->slot_dim;
  auto fea_dim = _param_config->fea_dim;
  auto& features = _features[table_id];
  auto& push_g = _feature_push_value[table_id];
H
heqiaozhi 已提交
568 569 570 571
  check_pull_push_memory(features, &push_g, fea_dim);
  CHECK(push_g.size() == features.size() + 1)
      << "push_g size:" << push_g.size()
      << " features size:" << features.size();
572 573 574 575
  uint64_t fea_idx = 0u;
  auto& fea_info = _fea_info[table_id];
  int offset = 2;
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
H
heqiaozhi 已提交
576
  // slot_idx = 0 is label
577
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
H
heqiaozhi 已提交
578 579 580 581 582 583
    if (_param_config->slot_alias_to_table.find(feed_vec[slot_idx]) ==
        _param_config->slot_alias_to_table.end()) {
      LOG(ERROR) << "ERROR slot_idx:" << slot_idx
                 << " name:" << feed_vec[slot_idx];
    } else if (_param_config->slot_alias_to_table[feed_vec[slot_idx]] !=
               table_id) {
584
      continue;
585
    }
586 587
    Variable* g_var = thread_scope_->FindVar(
        _param_config->gradient_var[table_id][slot_idx - 1]);
H
heqiaozhi 已提交
588 589 590
    CHECK(g_var != nullptr)
        << "var[" << _param_config->gradient_var[table_id][slot_idx - 1]
        << "] not found";
591 592
    LoDTensor* g_tensor = g_var->GetMutable<LoDTensor>();
    if (g_tensor == NULL) {
H
heqiaozhi 已提交
593 594 595
      LOG(ERROR) << "var["
                 << _param_config->gradient_var[table_id][slot_idx - 1]
                 << "] not found";
596 597 598
      exit(-1);
    }
    float* g = g_tensor->data<float>();
H
heqiaozhi 已提交
599

600 601 602 603 604 605 606 607
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
    CHECK(var != nullptr) << "var[" << feed_vec[slot_idx] << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    if (tensor == NULL) {
      LOG(ERROR) << "var[" << feed_vec[slot_idx] << "] not found";
      exit(-1);
    }
    int len = tensor->numel();
H
heqiaozhi 已提交
608 609 610 611
    CHECK(slot_dim * len == g_tensor->numel())
        << "len:" << len << " g_numel:" << g_tensor->numel();
    CHECK(len == tensor->numel()) << "len:" << len
                                  << "t_numel:" << tensor->numel();
612 613 614 615 616 617
    int64_t* ids = tensor->data<int64_t>();
    for (auto id_idx = 0u; id_idx < len; ++id_idx) {
      if (ids[id_idx] == 0) {
        g += slot_dim;
        continue;
      }
H
heqiaozhi 已提交
618
      memcpy(push_g[fea_idx].data() + offset, g, sizeof(float) * slot_dim);
619
      push_g[fea_idx][0] = 1.0f;
H
heqiaozhi 已提交
620 621
      CHECK(fea_idx < fea_info.size()) << "fea_idx:" << fea_idx
                                       << " size:" << fea_info.size();
622 623 624
      push_g[fea_idx][1] = static_cast<float>(fea_info[fea_idx].label);
      g += slot_dim;
      fea_idx++;
625
    }
626
  }
H
heqiaozhi 已提交
627 628
  CHECK(fea_idx == features.size()) << "fea_idx:" << fea_idx
                                    << " features size:" << features.size();
629
  CHECK_GT(features.size(), 0);
H
heqiaozhi 已提交
630

631 632 633 634 635
  std::vector<float*> push_g_vec;
  for (auto i = 0u; i < features.size(); ++i) {
    push_g_vec.push_back(push_g[i].data());
  }
  auto status = _pslib_ptr->_worker_ptr->push_sparse(
H
heqiaozhi 已提交
636 637
      table_id, features.data(), (const float**)push_g_vec.data(),
      features.size());
638
  _push_sparse_status.push_back(std::move(status));
639 640
}

H
heqiaozhi 已提交
641
void AsyncExecutorThreadWorker::collect_feasign_info(int table_id) {
642 643 644 645 646 647 648
  auto& fea_info = _fea_info[table_id];
  auto& feature = _features[table_id];
  fea_info.resize(feature.size());
  const std::vector<std::string>& feed_vec = thread_reader_->GetUseSlotAlias();
  Variable* var = thread_scope_->FindVar(feed_vec[0]);
  LoDTensor* tensor = var->GetMutable<LoDTensor>();
  int64_t* label = tensor->data<int64_t>();
H
heqiaozhi 已提交
649

650 651 652
  int global_index = 0;
  for (auto slot_idx = 1u; slot_idx < feed_vec.size(); ++slot_idx) {
    Variable* var = thread_scope_->FindVar(feed_vec[slot_idx]);
653
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
654
    int64_t* ids = tensor->data<int64_t>();
H
heqiaozhi 已提交
655

656 657 658 659 660
    int fea_idx = 0;
    for (auto ins_idx = 1u; ins_idx < tensor->lod()[0].size(); ++ins_idx) {
      for (; fea_idx < tensor->lod()[0][ins_idx]; ++fea_idx) {
        if (ids[fea_idx] == 0u) {
          continue;
661
        }
662
        FeasignInfo info{slot_idx, ins_idx, label[ins_idx - 1]};
H
heqiaozhi 已提交
663

664 665
        fea_info[global_index++] = std::move(info);
      }
666
    }
667
  }
H
heqiaozhi 已提交
668 669
  CHECK(global_index == feature.size())
      << "expect fea info size:" << feature.size() << " real:" << global_index;
670 671 672
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
673 674 675 676
    const std::vector<uint64_t>& features,
    std::vector<std::vector<float>>* push_g, int dim) {
  push_g->resize(features.size() + 1);
  for (auto& t : *push_g) {
D
dongdaxiang 已提交
677 678
    t.resize(dim);
  }
679 680 681
}

void AsyncExecutorThreadWorker::check_pull_push_memory(
H
heqiaozhi 已提交
682
    const std::vector<uint64_t>& features, std::vector<float*>* push_g,
D
dongdaxiang 已提交
683
    int dim) {
H
heqiaozhi 已提交
684 685 686
  if (features.size() > push_g->size()) {
    push_g->reserve(features.size() + 1);
    auto size = features.size() - push_g->size() + 1;
D
dongdaxiang 已提交
687 688
    for (auto i = 0u; i < size; ++i) {
      float* ptr = new float[dim];
H
heqiaozhi 已提交
689
      push_g->push_back(ptr);
690
    }
D
dongdaxiang 已提交
691
  }
692
}
H
heqiaozhi 已提交
693
#endif
694

W
Wang Guibao 已提交
695 696
}  // einit_modelnd namespace framework
}  // end namespace paddle