gemm_conv_op.h 7.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hedaoyuan 已提交
17
#include "paddle/framework/eigen.h"
18 19 20 21 22 23 24 25 26 27 28 29 30 31
#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/im2col.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename Place, typename T>
class GemmConvKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("Input");
H
hedaoyuan 已提交
32 33 34 35
    // The filter will be reshaped in the calculations,
    // so here use an assignment operation,
    // that avoids modifying the variable in the Scope.
    Tensor filter = *context.Input<Tensor>("Filter");
36 37 38 39 40 41 42 43
    Tensor* output = context.Output<Tensor>("Output");
    output->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
H
hedaoyuan 已提交
44 45 46
    int filter_height = filter.dims()[filter.dims().size() - 2];
    int filter_width = filter.dims()[filter.dims().size() - 1];
    int output_channels = output->dims()[1];
47 48 49 50 51 52
    int output_height = output->dims()[2];
    int output_width = output->dims()[3];

    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
H
hedaoyuan 已提交
53
    // use col_shape in the im2col calculation
54 55
    framework::DDim col_shape = {input_channels, filter_height, filter_width,
                                 output_height, output_width};
H
hedaoyuan 已提交
56 57 58 59
    // use col_matrix_shape in the gemm calculation
    framework::DDim col_matrix_shape = {
        input_channels * filter_height * filter_width,
        output_height * output_width};
H
hedaoyuan 已提交
60
    Tensor col;
61
    col.mutable_data<float>(col_shape, context.GetPlace());
H
hedaoyuan 已提交
62 63 64 65 66
    // col_matrix shares the same piece of data with col,
    // but will be reshaped into a two-dimensional matrix shape
    // to call the matrix multiplication interface.
    Tensor col_matrix = col;
    col_matrix.Resize(col_matrix_shape);
67 68 69 70

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim filter_matrix_shape = {
H
hedaoyuan 已提交
71 72 73 74 75 76 77 78
        output_channels, framework::product(filter.dims()) / output_channels};
    filter.Resize(filter_matrix_shape);

    framework::DDim output_matrix_shape = {output_channels,
                                           output_height * output_width};

    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);
79

H
hedaoyuan 已提交
80
    // convolution operator: im2col + gemm
81 82
    for (int i = 0; i < batch_size; i++) {
      // im2col
H
hedaoyuan 已提交
83
      Tensor in_slice = input->Slice<T>(i, i + 1);
84 85 86 87 88
      in_slice.Resize(input_shape);
      im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
             device_context);

      // gemm
H
hedaoyuan 已提交
89
      Tensor out_slice = output->Slice<T>(i, i + 1);
90
      out_slice.Resize(output_matrix_shape);
H
hedaoyuan 已提交
91 92
      math::matmul<Place, T>(filter, false, col_matrix, false, T(1.0),
                             &out_slice, T(0.0), device_context);
93 94 95 96 97 98 99 100
    }
  }
};

template <typename Place, typename T>
class GemmConvGradKernel : public framework::OpKernel {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
H
hedaoyuan 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
    const Tensor* input = context.Input<Tensor>("Input");
    Tensor* filter = const_cast<Tensor*>(context.Input<Tensor>("Filter"));
    const Tensor* output_grad =
        context.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad =
        context.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad =
        context.Output<Tensor>(framework::GradVarName("Filter"));
    input_grad->mutable_data<T>(context.GetPlace());
    filter_grad->mutable_data<T>(context.GetPlace());

    std::vector<int> strides = context.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = context.Attr<std::vector<int>>("paddings");
    auto filter_dims = filter->dims();

    int batch_size = input->dims()[0];
    int input_channels = input->dims()[1];
    int filter_height = filter->dims()[filter->dims().size() - 2];
    int filter_width = filter->dims()[filter->dims().size() - 1];
    int output_height = output_grad->dims()[2];
    int output_width = output_grad->dims()[3];

    paddle::operators::math::Col2ImFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        col2im;
    paddle::operators::math::Im2ColFunctor<
        paddle::operators::math::ColFormat::kCFO, Place, T>
        im2col;
    Tensor col;
    framework::DDim col_shape = {input_channels, filter_height, filter_width,
                                 output_height, output_width};
    col.mutable_data<float>(col_shape, context.GetPlace());

    auto* device_context =
        const_cast<platform::DeviceContext*>(context.device_context_);

    framework::DDim input_shape = {input->dims()[1], input->dims()[2],
                                   input->dims()[3]};
    framework::DDim filter_matrix_shape = {
        filter->dims()[0],
        filter->dims()[1] * filter->dims()[2] * filter->dims()[3]};
    framework::DDim col_matrix_shape = {
        input_channels * filter_height * filter_width,
        output_height * output_width};
    framework::DDim output_matrix_shape = {
        output_grad->dims()[1],
        output_grad->dims()[2] * output_grad->dims()[3]};
    filter->Resize(filter_matrix_shape);
    filter_grad->Resize(filter_matrix_shape);

    auto t1 = framework::EigenVector<T>::Flatten(*filter_grad);
    t1.device(context.GetEigenDevice<Place>()) = t1.constant(static_cast<T>(0));
    auto t2 = framework::EigenVector<T>::Flatten(*input_grad);
    t2.device(context.GetEigenDevice<Place>()) = t2.constant(static_cast<T>(0));

    // convolution backward input operator:  gemm + col2im
    // convolution backward weight operator: im2col + gemm
    for (int i = 0; i < batch_size; i++) {
      // gemm
      Tensor out_slice = output_grad->Slice<T>(i, i + 1);
      out_slice.Resize(output_matrix_shape);
      col.Resize(col_matrix_shape);
      math::matmul<Place, T>(*filter, true, out_slice, false, T(1.0), &col,
                             T(0.0), device_context);

      // col2im
      Tensor in_grad_slice = input_grad->Slice<T>(i, i + 1);
      in_grad_slice.Resize(input_shape);
      col.Resize(col_shape);
      col2im(in_grad_slice, col, strides[0], strides[1], paddings[0],
             paddings[1], device_context);

      // im2col
      Tensor in_slice = input->Slice<T>(i, i + 1);
      in_slice.Resize(input_shape);
      col.Resize(col_shape);
      im2col(in_slice, col, strides[0], strides[1], paddings[0], paddings[1],
             device_context);

      // gemm
      col.Resize(col_matrix_shape);
      math::matmul<Place, T>(out_slice, false, col, true, T(1.0), filter_grad,
                             T(1.0), device_context);
    }
    filter->Resize(filter_dims);
    filter_grad->Resize(filter_dims);
187 188 189 190 191
  }
};

}  // namespace operators
}  // namespace paddle