MKLDNNLayer.cpp 10.5 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "MKLDNNLayer.h"

using namespace mkldnn;  // NOLINT
typedef memory::format format;

namespace paddle {

bool MKLDNNLayer::init(const LayerMap& layerMap,
                       const ParameterMap& parameterMap) {
T
tensor-tang 已提交
24
  CHECK(FLAGS_use_mkldnn) << "MKLDNNLayers only support use_mkldnn."
25
                          << "Please set WITH_MKL=ON "
T
tensor-tang 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
                          << "and set use_mkldnn=True";
  CHECK(!useGpu_) << "Do not support GPU yet";

  // set device id before Layer::init
  setDevice(MKLDNN_DEVICE);
  // change param device to MKLDNN device
  setParamsDevice(MKLDNN_DEVICE, parameterMap);
  if (!Layer::init(layerMap, parameterMap)) {
    return false;
  }
  setOutputMap();
  checkCPUOutputsNumber();

  stream_.reset(new MKLDNNStream());
  engine_ = CPUEngine::Instance().getEngine();
  return true;
}

void MKLDNNLayer::forward(PassType passType) {
  passType_ = passType;

  {
    REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str());
    CHECK(!inputLayers_.empty());
    copySeqInfoToOutputs();
51
    if (condition_ != keepCondition()) {
T
tensor-tang 已提交
52
      VLOG(MKLDNN_BASE) << getName() << " reset mkldnn forward";
53
      condition_ = keepCondition();
T
tensor-tang 已提交
54
      reshape(bs_, ic_, ih_, iw_, oc_, oh_, ow_);
55
      printSizeInfo();
56
      // the output_.value and output_.grad are shared with CPU device
T
tensor-tang 已提交
57
      shareCPUDevice();
58 59 60 61 62 63
      pipelineFwd_.clear();
      inVals_.resize(inputLayers_.size(), nullptr);
      extInVals_.resize(inputLayers_.size(), nullptr);
      cvtInVals_.resize(inputLayers_.size(), nullptr);
      resetFwd(pipelineFwd_, inVals_, outVal_);
      prepareValueConversions(pipelineFwd_);
T
tensor-tang 已提交
64 65 66 67 68
      convertWeightsFromPaddle();
      printValueFormat();
      needResetBwd_ = true;
    }

69
    if (inputLayers_[0]->getType() == "data" && inputLayers_.size() == 1) {
T
tensor-tang 已提交
70 71
      // Update input value data when input layer is "data" type,
      // since the input value data address might be changed.
72 73
      CHECK(extInVals_[0]);
      extInVals_[0]->setData(getInputValue(0, CPU_DEVICE)->getData());
T
tensor-tang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    }

    if (!outputOnlyMKLDNN_) {
      clearGrads();
    }
    stream_->submit(pipelineFwd_);
  }
  {
    REGISTER_TIMER_INFO("FwActTimer", getName().c_str());
    forwardActivation();
  }
}

void MKLDNNLayer::backward(const UpdateCallback& callback) {
  if (needResetBwd_) {
    VLOG(MKLDNN_BASE) << getName() << " reset mkldnn backward";
    pipelineBwd_.clear();
91 92 93
    inGrads_.resize(inputLayers_.size(), nullptr);
    extInGrads_.resize(inputLayers_.size(), nullptr);
    cvtInGrads_.resize(inputLayers_.size(), nullptr);
T
tensor-tang 已提交
94 95
    pipelineMergeGrad_.clear();
    mergeGrad_ = nullptr;
96 97
    resetBwd(pipelineBwd_, inGrads_, outGrad_);
    prepareGradConversions(pipelineBwd_);
T
tensor-tang 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    printGradFormat();
    needResetBwd_ = false;
  }

  // merge grad must before backward activation
  if (mergeGrad_) {
    REGISTER_TIMER_INFO("MergeBpGrad", getName().c_str());
    stream_->submit(pipelineMergeGrad_);
  }
  {
    REGISTER_TIMER_INFO("BpActTimer", getName().c_str());
    backwardActivation();
  }
  {
    REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str());
    stream_->submit(pipelineBwd_);
  }
  {
    REGISTER_TIMER_INFO("WeightUpdate", getName().c_str());
    updateWeights(callback);
  }
}

121 122 123
void MKLDNNLayer::reshapeInput(int& batchsize,
                               int& height,
                               int& width,
124 125
                               size_t idx) {
  const Argument& input = inputLayers_[idx]->getOutput();
T
tensor-tang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
  batchsize = input.getBatchSize();
  int h = input.getFrameHeight();
  int w = input.getFrameWidth();
  if (h != 0) {
    height = h;
  }
  if (w != 0) {
    width = w;
  }
}

void MKLDNNLayer::reshapeOutput(size_t height, size_t width) {
  output_.setFrameHeight(height);
  output_.setFrameWidth(width);
  for (size_t i = 0; i < outputOtherDevice_.size(); i++) {
    outputOtherDevice_[i].setFrameHeight(height);
    outputOtherDevice_[i].setFrameWidth(width);
  }
}

void MKLDNNLayer::resetWithMatrix(MKLDNNMatrixPtr& dnn,
                                  const MatrixPtr& mat,
                                  memory::primitive_desc pd) {
  dnn = nullptr;
  if (mat == nullptr) {
    return;
  }
  dnn = MKLDNNMatrix::create(pd, mat);
}

void MKLDNNLayer::resetInValue(
157 158
    MKLDNNMatrixPtr& in,
    const std::shared_ptr<memory::primitive_desc>& intPD,
159
    size_t idx,
160
    int inputChannel) {
161 162
  cvtInVals_[idx] = nullptr;
  extInVals_[idx] = nullptr;
T
tensor-tang 已提交
163
  in = nullptr;
164 165
  inputChannel = inputChannel == 0 ? ic_ : inputChannel;
  CHECK_GT(bs_ * inputChannel * ih_ * iw_, 0);
T
tensor-tang 已提交
166
  auto extPD = MKLDNNMatrix::createPrimitiveDesc(
167
      {bs_, inputChannel, ih_, iw_}, format::nchw, engine_);
168 169 170 171 172 173
  const MatrixPtr& inMat = inputLayers_[idx]->getOutputValue();
  extInVals_[idx] = std::dynamic_pointer_cast<MKLDNNMatrix>(inMat);
  CHECK_EQ(inputIsOnlyMKLDNN(), extInVals_[idx] != nullptr);
  if (extInVals_[idx] == nullptr ||
      extInVals_[idx]->getFormat() == format::nc) {
    extInVals_[idx] = MKLDNNMatrix::create(extPD, inMat);
T
tensor-tang 已提交
174
  }
175
  in = extInVals_[idx];
T
tensor-tang 已提交
176 177 178 179 180
  if (nullptr == intPD || in->getPrimitiveDesc() == *intPD) {
    return;
  }
  // need create reorder
  in = MKLDNNMatrix::create(*intPD);
181 182
  cvtInVals_[idx] = MKLDNNMatrix::createReorder(extInVals_[idx], in);
  CHECK(cvtInVals_[idx]) << "should not be emptry";
T
tensor-tang 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
}

void MKLDNNLayer::resetOutValue(MKLDNNMatrixPtr& out,
                                memory::primitive_desc intPD) {
  cvtOutVal_ = nullptr;
  out = MKLDNNMatrix::create(intPD, output_.value);
  extOutVal_ = out;
  if (outputIsOnlyMKLDNN() || isPaddleFormat(extOutVal_->getFormat())) {
    return;
  }
  // need create reorder
  CHECK_GT(bs_ * oc_ * oh_ * ow_, 0);
  extOutVal_ = MKLDNNMatrix::create(
      memory::dims{bs_, oc_, oh_, ow_}, format::nchw, engine_, output_.value);
  out = MKLDNNMatrix::create(intPD);
  cvtOutVal_ = MKLDNNMatrix::createReorder(out, extOutVal_);
  CHECK(cvtOutVal_) << "should not be empty";
}

void MKLDNNLayer::resetInGrad(MKLDNNMatrixPtr& in,
203
                              memory::primitive_desc intPD,
204
                              size_t idx) {
205 206
  cvtInGrads_[idx] = nullptr;
  extInGrads_[idx] = nullptr;
T
tensor-tang 已提交
207
  in = nullptr;
208
  LayerPtr& input = inputLayers_[idx];
T
tensor-tang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222
  if (input->getOutputGrad() == nullptr) {
    // no need input grad
    return;
  }
  CHECK(inputIsOnlyMKLDNN() || input->getOutputMapSize() <= 1)
      << "only support input is MKLDNN layer or only have one output layer";
  // when input is a mkldnn branch node,
  // this layer will save input grad to a internal buffer,
  // and the mkldnn input layer will merge them to actual prev->output_.grad
  const MatrixPtr& inMat =
      input->getOutputMapSize() <= 1 ? input->getOutputGrad() : nullptr;
  in = MKLDNNMatrix::create(intPD, inMat);
  Argument& arg = input->getOutput(this->getName());
  arg.grad = std::dynamic_pointer_cast<Matrix>(in);
223
  CHECK_PRIMITIVE_DESC_EQ(inVals_[idx], intPD);
T
tensor-tang 已提交
224 225 226 227
  if (inputIsOnlyMKLDNN()) {
    return;
  }

228 229
  extInGrads_[idx] = in;
  if (isPaddleFormat(extInGrads_[idx]->getFormat())) {
T
tensor-tang 已提交
230 231 232
    return;
  }
  // need create reorder
233 234
  CHECK(extInVals_[idx] != nullptr &&
        isPaddleFormat(extInVals_[idx]->getFormat()))
T
tensor-tang 已提交
235
      << "should have external input value and the format must be nchw(nc)";
236 237
  extInGrads_[idx] =
      MKLDNNMatrix::create(extInVals_[idx]->getPrimitiveDesc(), inMat);
238
  CHECK_PRIMITIVE_DESC_EQ(inVals_[idx], intPD);
T
tensor-tang 已提交
239
  in = MKLDNNMatrix::create(intPD);
240 241
  cvtInGrads_[idx] = MKLDNNMatrix::createReorder(in, extInGrads_[idx]);
  CHECK(cvtInGrads_[idx]);
T
tensor-tang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
}

void MKLDNNLayer::resetOutGrad(MKLDNNMatrixPtr& out,
                               memory::primitive_desc intPD) {
  cvtOutGrad_ = nullptr;
  extOutGrad_ = nullptr;
  out = nullptr;
  MatrixPtr& outMat = output_.grad;
  out = MKLDNNMatrix::create(intPD, outMat);
  resetMergeGrad(out);
  if (outputIsOnlyMKLDNN()) {
    return;
  }
  CHECK_LE(outputMap_.size(), 1U) << "do not support mixed with cpu device";
  extOutGrad_ = out;
  if (isPaddleFormat(extOutGrad_->getFormat())) {
    return;
  }
  // need create reorder
  CHECK(extOutVal_ != nullptr && isPaddleFormat(extOutVal_->getFormat()))
      << "should have external output value and the format must be nchw(nc)";
  extOutGrad_ = MKLDNNMatrix::create(extOutVal_->getPrimitiveDesc(), outMat);
T
tensor-tang 已提交
264
  CHECK_PRIMITIVE_DESC_EQ(outVal_, intPD);
T
tensor-tang 已提交
265 266 267 268 269 270 271 272 273 274 275 276 277
  out = MKLDNNMatrix::create(intPD);
  cvtOutGrad_ = MKLDNNMatrix::createReorder(extOutGrad_, out);
  CHECK(cvtOutGrad_);
}

void MKLDNNLayer::resetMergeGrad(MKLDNNMatrixPtr& out) {
  mergeGrad_ = nullptr;
  pipelineMergeGrad_.clear();
  if (outputMap_.size() <= 1 || !outputIsOnlyMKLDNN()) {
    // do not merge when output is not all MKLDNN or only one output
    return;
  }
  CHECK(out) << "should have reset internal ouput grad";
T
tensor-tang 已提交
278
  std::vector<float> scales(outputMap_.size(), 1.0);
T
tensor-tang 已提交
279 280 281 282 283 284 285 286 287 288 289 290
  std::vector<memory::primitive_desc> srcPDs;
  std::vector<primitive::at> srcs;
  for (auto it = outputMap_.begin(); it != outputMap_.end(); ++it) {
    MKLDNNMatrixPtr src =
        std::dynamic_pointer_cast<MKLDNNMatrix>(it->second->grad);
    CHECK(src) << "should be MKLDNNMatrix";
    auto srcDims = src->getDims();
    auto dstDims = out->getDims();
    CHECK_EQ(srcDims.size(), dstDims.size());
    for (size_t i = 0; i < srcDims.size(); ++i) {
      CHECK_EQ(srcDims[i], dstDims[i]);
    }
291 292
    VLOG(MKLDNN_BASE) << getName() << " has output grad " << it->first
                      << ", format " << src->getFormat();
T
tensor-tang 已提交
293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    srcPDs.push_back(src->getPrimitiveDesc());
    srcs.push_back(*src);
  }

  // TODO(TJ): remove me when mkldnn sum support different formats
  for (size_t i = 1; i < srcPDs.size(); ++i) {
    CHECK(srcPDs[0] == srcPDs[i]);
  }
  tmpOutGrad_ = out;
  tmpCvt_ = nullptr;
  if (out->getPrimitiveDesc() != srcPDs[0]) {
    tmpOutGrad_ = MKLDNNMatrix::create(srcPDs[0]);
    tmpCvt_ = MKLDNNMatrix::createReorder(tmpOutGrad_, out);
    CHECK(tmpCvt_);
    pipelineMergeGrad_.push_back(*tmpCvt_);
  }

  auto sumPD =
      sum::primitive_desc(tmpOutGrad_->getMemoryDesc(), scales, srcPDs);
  mergeGrad_.reset(new sum(sumPD, srcs, *tmpOutGrad_));
  pipelineMergeGrad_.insert(pipelineMergeGrad_.begin(), *mergeGrad_);
}

}  // namespace paddle