test_optimizer.py 10.1 KB
Newer Older
Q
Qiao Longfei 已提交
1 2 3 4
import unittest

import paddle.v2.framework.framework as framework
import paddle.v2.framework.optimizer as optimizer
5
from paddle.v2.framework.backward import append_backward_ops
Q
Qiao Longfei 已提交
6 7 8 9


class TestOptimizer(unittest.TestCase):
    def test_sgd_optimizer(self):
10
        program = framework.Program()
Q
Qiao Longfei 已提交
11 12 13 14 15 16 17
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
18
        block.append_op(
Q
Qiao Longfei 已提交
19 20 21 22 23 24 25 26 27 28 29 30
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01)
        opts = sgd_optimizer.minimize(mul_out)
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "sgd")


31 32 33 34 35 36 37 38
class TestMomentumOptimizer(unittest.TestCase):
    class MockMomentum(optimizer.MomentumOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_velocity_str(self):
            return self._velocity_acc_str

39
    def test_vanilla_momentum_optimizer(self):
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        momentum_optimizer = self.MockMomentum(learning_rate=0.01, momentum=0.2)
55
        params_grads = append_backward_ops(mul_out)
56 57 58 59 60 61 62
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
        opts = momentum_optimizer.create_optimization_pass(params_grads,
                                                           mul_out)
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "momentum")
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
        self.assertFalse(sgd_op.attr('useNesterov'))

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)

    def test_nesterov_momentum_optimizer(self):
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        momentum_optimizer = self.MockMomentum(
            learning_rate=0.01, momentum=0.2, use_nesterov=True)
        params_grads = append_backward_ops(mul_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(momentum_optimizer.get_accumulators()), 0)
        opts = momentum_optimizer.create_optimization_pass(params_grads,
                                                           mul_out)
        self.assertEqual(len(opts), 1)
        sgd_op = opts[0]
        self.assertEqual(sgd_op.type, "momentum")
        self.assertTrue(sgd_op.attr('useNesterov'))
99 100 101 102 103 104 105 106 107 108

        # Check accumulators
        accumulators = momentum_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators)
        velocity_acc = accumulators[momentum_optimizer.get_velocity_str()]
        self.assertEqual(len(velocity_acc), 1)
        self.assertTrue(mul_x.name in velocity_acc)


109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class TestAdagradOptimizer(unittest.TestCase):
    class MockAdagrad(optimizer.AdagradOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

    def test_adagrad_optimizer(self):
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        adagrad_optimizer = self.MockAdagrad(learning_rate=0.01, epsilon=1.0e-6)
133
        params_grads = append_backward_ops(mul_out)
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0)
        opts = adagrad_optimizer.create_optimization_pass(params_grads, mul_out)
        self.assertEqual(len(opts), 1)
        adagrad_op = opts[0]
        self.assertEqual(adagrad_op.type, "adagrad")

        # check accumulators
        accumulators = adagrad_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 1)
        self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators)
        moment_acc = accumulators[adagrad_optimizer.get_moment_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)


150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
class TestAdamOptimizer(unittest.TestCase):
    class MockAdam(optimizer.AdamOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment1_str(self):
            return self._moment1_acc_str

        def get_moment2_str(self):
            return self._moment2_acc_str

    def test_adam_optimizer(self):
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        adam_optimizer = self.MockAdam(
            learning_rate=0.01, beta1=0.9, beta2=0.999)
178
        params_grads = append_backward_ops(mul_out)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adam_optimizer.get_accumulators()), 0)
        opts = adam_optimizer.create_optimization_pass(params_grads, mul_out)
        self.assertEqual(len(opts), 3)
        adam_op = opts[0]
        self.assertEqual(adam_op.type, "adam")

        # Check accumulators
        accumulators = adam_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adam_optimizer.get_moment1_str() in accumulators)
        self.assertTrue(adam_optimizer.get_moment2_str() in accumulators)
        moment1_acc = accumulators[adam_optimizer.get_moment1_str()]
        moment2_acc = accumulators[adam_optimizer.get_moment2_str()]
        self.assertEqual(len(moment1_acc), 1)
        self.assertEqual(len(moment2_acc), 1)
        self.assertTrue(mul_x.name in moment1_acc)
        self.assertTrue(mul_x.name in moment2_acc)


199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
class TestAdamaxOptimizer(unittest.TestCase):
    class MockAdamax(optimizer.AdamaxOptimizer):
        def get_accumulators(self):
            return self._accumulators

        def get_moment_str(self):
            return self._moment_acc_str

        def get_inf_norm_str(self):
            return self._inf_norm_acc_str

    def test_adamax_optimizer(self):
        program = framework.Program()
        block = program.global_block()
        mul_x = block.create_parameter(
            dtype="float32", shape=[5, 10], lod_level=0, name="mul.x")
        mul_y = block.create_var(
            dtype="float32", shape=[10, 8], lod_level=0, name="mul.y")
        mul_out = block.create_var(
            dtype="float32", shape=[5, 8], lod_level=0, name="mul.out")
        block.append_op(
            type="mul",
            inputs={"X": mul_x,
                    "Y": mul_y},
            outputs={"Out": mul_out},
            attrs={"x_num_col_dims": 1})
        adamax_optimizer = self.MockAdamax(
            learning_rate=0.01, beta1=0.9, beta2=0.999)
        params_grads = append_backward_ops(mul_out)
        self.assertEqual(len(params_grads), 1)
        self.assertEqual(len(adamax_optimizer.get_accumulators()), 0)
        opts = adamax_optimizer.create_optimization_pass(params_grads, mul_out)
        self.assertEqual(len(opts), 2)
        adam_op = opts[0]
        self.assertEqual(adam_op.type, "adamax")

        # Check accumulators
        accumulators = adamax_optimizer.get_accumulators()
        self.assertEqual(len(accumulators), 2)
        self.assertTrue(adamax_optimizer.get_moment_str() in accumulators)
        self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators)
        moment_acc = accumulators[adamax_optimizer.get_moment_str()]
        inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()]
        self.assertEqual(len(moment_acc), 1)
        self.assertEqual(len(inf_norm_acc), 1)
        self.assertTrue(mul_x.name in moment_acc)
        self.assertTrue(mul_x.name in inf_norm_acc)


Q
Qiao Longfei 已提交
248 249
if __name__ == '__main__':
    unittest.main()