functional_tensor.py 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import division

17 18 19
import math
import numbers

20
import paddle
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
import paddle.nn.functional as F

import sys
import collections


def _assert_image_tensor(img, data_format):
    if not isinstance(
            img, paddle.Tensor) or img.ndim != 3 or not data_format.lower() in (
                'chw', 'hwc'):
        raise RuntimeError(
            'not support [type={}, ndim={}, data_format={}] paddle image'.
            format(type(img), img.ndim, data_format))


def _get_image_h_axis(data_format):
    if data_format.lower() == 'chw':
        return -2
    elif data_format.lower() == 'hwc':
        return -3


def _get_image_w_axis(data_format):
    if data_format.lower() == 'chw':
        return -1
    elif data_format.lower() == 'hwc':
        return -2


def _get_image_c_axis(data_format):
    if data_format.lower() == 'chw':
        return -3
    elif data_format.lower() == 'hwc':
        return -1


def _get_image_n_axis(data_format):
    if len(data_format) == 3:
        return None
    elif len(data_format) == 4:
        return 0


def _is_channel_last(data_format):
    return _get_image_c_axis(data_format) == -1


def _is_channel_first(data_format):
    return _get_image_c_axis(data_format) == -3


def _get_image_num_batches(img, data_format):
    if _get_image_n_axis(data_format):
        return img.shape[_get_image_n_axis(data_format)]
    return None


def _get_image_num_channels(img, data_format):
    return img.shape[_get_image_c_axis(data_format)]


def _get_image_size(img, data_format):
    return img.shape[_get_image_w_axis(data_format)], img.shape[
        _get_image_h_axis(data_format)]
85 86 87


def normalize(img, mean, std, data_format='CHW'):
88
    """Normalizes a tensor image given mean and standard deviation.
89 90 91 92 93 94 95 96 97 98 99 100

    Args:
        img (paddle.Tensor): input data to be normalized.
        mean (list|tuple): Sequence of means for each channel.
        std (list|tuple): Sequence of standard deviations for each channel.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.

    Returns:
        Tensor: Normalized mage.

    """
101 102 103 104 105 106 107 108 109
    _assert_image_tensor(img, data_format)

    mean = paddle.to_tensor(mean, place=img.place)
    std = paddle.to_tensor(std, place=img.place)

    if _is_channel_first(data_format):
        mean = mean.reshape([-1, 1, 1])
        std = std.reshape([-1, 1, 1])

110
    return (img - mean) / std
111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514


def to_grayscale(img, num_output_channels=1, data_format='CHW'):
    """Converts image to grayscale version of image.

    Args:
        img (paddel.Tensor): Image to be converted to grayscale.
        num_output_channels (int, optionl[1, 3]):
            if num_output_channels = 1 : returned image is single channel
            if num_output_channels = 3 : returned image is 3 channel 
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.

    Returns:
        paddle.Tensor: Grayscale version of the image.
    """
    _assert_image_tensor(img, data_format)

    if num_output_channels not in (1, 3):
        raise ValueError('num_output_channels should be either 1 or 3')

    rgb_weights = paddle.to_tensor(
        [0.2989, 0.5870, 0.1140], place=img.place).astype(img.dtype)

    if _is_channel_first(data_format):
        rgb_weights = rgb_weights.reshape((-1, 1, 1))

    _c_index = _get_image_c_axis(data_format)

    img = (img * rgb_weights).sum(axis=_c_index, keepdim=True)
    _shape = img.shape
    _shape[_c_index] = num_output_channels

    return img.expand(_shape)


def _affine_grid(theta, w, h, ow, oh):
    d = 0.5
    base_grid = paddle.ones((1, oh, ow, 3), dtype=theta.dtype)

    x_grid = paddle.linspace(-ow * 0.5 + d, ow * 0.5 + d - 1, ow)
    base_grid[..., 0] = x_grid
    y_grid = paddle.linspace(-oh * 0.5 + d, oh * 0.5 + d - 1, oh).unsqueeze_(-1)
    base_grid[..., 1] = y_grid

    scaled_theta = theta.transpose(
        (0, 2, 1)) / paddle.to_tensor([0.5 * w, 0.5 * h])
    output_grid = base_grid.reshape((1, oh * ow, 3)).bmm(scaled_theta)

    return output_grid.reshape((1, oh, ow, 2))


def _grid_transform(img, grid, mode, fill):
    if img.shape[0] > 1:
        grid = grid.expand(img.shape[0], grid.shape[1], grid.shape[2],
                           grid.shape[3])

    if fill is not None:
        dummy = paddle.ones(
            (img.shape[0], 1, img.shape[2], img.shape[3]), dtype=img.dtype)
        img = paddle.concat((img, dummy), axis=1)

    img = F.grid_sample(
        img, grid, mode=mode, padding_mode="zeros", align_corners=False)

    # Fill with required color
    if fill is not None:
        mask = img[:, -1:, :, :]  # n 1 h w
        img = img[:, :-1, :, :]  # n c h w
        mask = mask.expand_as(img)
        len_fill = len(fill) if isinstance(fill, (tuple, list)) else 1
        fill_img = paddle.to_tensor(fill).reshape(
            (1, len_fill, 1, 1)).expand_as(img)

        if mode == 'nearest':
            mask = paddle.cast(mask < 0.5, img.dtype)
            img = img * (1. - mask) + mask * fill_img
        else:  # 'bilinear'
            img = img * mask + (1.0 - mask) * fill_img

    return img


def rotate(img,
           angle,
           interpolation='nearest',
           expand=False,
           center=None,
           fill=None,
           data_format='CHW'):
    """Rotates the image by angle.

    Args:
        img (paddle.Tensor): Image to be rotated.
        angle (float or int): In degrees degrees counter clockwise order.
        interpolation (str, optional): Interpolation method. If omitted, or if the 
            image has only one channel, it is set NEAREST . when use pil backend, 
            support method are as following: 
            - "nearest" 
            - "bilinear"
            - "bicubic"
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively.

    Returns:
        paddle.Tensor: Rotated image.

    """

    angle = -angle % 360
    img = img.unsqueeze(0)

    # n, c, h, w = img.shape
    w, h = _get_image_size(img, data_format=data_format)

    img = img if data_format.lower() == 'chw' else img.transpose((0, 3, 1, 2))

    post_trans = [0, 0]

    if center is None:
        rotn_center = [0, 0]
    else:
        rotn_center = [(p - s * 0.5) for p, s in zip(center, [w, h])]

    angle = math.radians(angle)
    matrix = [
        math.cos(angle),
        math.sin(angle),
        0.0,
        -math.sin(angle),
        math.cos(angle),
        0.0,
    ]

    matrix[2] += matrix[0] * (-rotn_center[0] - post_trans[0]) + matrix[1] * (
        -rotn_center[1] - post_trans[1])
    matrix[5] += matrix[3] * (-rotn_center[0] - post_trans[0]) + matrix[4] * (
        -rotn_center[1] - post_trans[1])

    matrix[2] += rotn_center[0]
    matrix[5] += rotn_center[1]

    matrix = paddle.to_tensor(matrix, place=img.place)
    matrix = matrix.reshape((1, 2, 3))

    if expand:
        # calculate output size
        corners = paddle.to_tensor(
            [[-0.5 * w, -0.5 * h, 1.0], [-0.5 * w, 0.5 * h, 1.0],
             [0.5 * w, 0.5 * h, 1.0], [0.5 * w, -0.5 * h, 1.0]],
            place=matrix.place).astype(matrix.dtype)

        _pos = corners.reshape(
            (1, -1, 3)).bmm(matrix.transpose((0, 2, 1))).reshape((1, -1, 2))
        _min = _pos.min(axis=-2).floor()
        _max = _pos.max(axis=-2).ceil()

        npos = _max - _min
        nw = npos[0][0]
        nh = npos[0][1]

        ow, oh = int(nw.numpy()[0]), int(nh.numpy()[0])

    else:
        ow, oh = w, h

    grid = _affine_grid(matrix, w, h, ow, oh)

    out = _grid_transform(img, grid, mode=interpolation, fill=fill)

    out = out if data_format.lower() == 'chw' else out.transpose((0, 2, 3, 1))

    return out.squeeze(0)


def vflip(img, data_format='CHW'):
    """Vertically flips the given paddle tensor.

    Args:
        img (paddle.Tensor): Image to be flipped.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.

    Returns:
        paddle.Tensor:  Vertically flipped image.

    """
    _assert_image_tensor(img, data_format)

    h_axis = _get_image_h_axis(data_format)

    return img.flip(axis=[h_axis])


def hflip(img, data_format='CHW'):
    """Horizontally flips the given paddle.Tensor Image.

    Args:
        img (paddle.Tensor): Image to be flipped.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.

    Returns:
        paddle.Tensor:  Horizontall flipped image.

    """
    _assert_image_tensor(img, data_format)

    w_axis = _get_image_w_axis(data_format)

    return img.flip(axis=[w_axis])


def crop(img, top, left, height, width, data_format='CHW'):
    """Crops the given paddle.Tensor Image.

    Args:
        img (paddle.Tensor): Image to be cropped. (0,0) denotes the top left 
            corner of the image.
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
        data_format (str, optional): Data format of img, should be 'HWC' or 
            'CHW'. Default: 'CHW'.
    Returns:
        paddle.Tensor: Cropped image.

    """
    _assert_image_tensor(img, data_format)

    if _is_channel_first(data_format):
        return img[:, top:top + height, left:left + width]
    else:
        return img[top:top + height, left:left + width, :]


def center_crop(img, output_size, data_format='CHW'):
    """Crops the given paddle.Tensor Image and resize it to desired size.

        Args:
            img (paddle.Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
            output_size (sequence or int): (height, width) of the crop box. If int,
                it is used for both directions   
            data_format (str, optional): Data format of img, should be 'HWC' or 
                'CHW'. Default: 'CHW'.     
        Returns:
            paddle.Tensor: Cropped image.

        """
    _assert_image_tensor(img, data_format)

    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))

    image_width, image_height = _get_image_size(img, data_format)
    crop_height, crop_width = output_size
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
    return crop(
        img,
        crop_top,
        crop_left,
        crop_height,
        crop_width,
        data_format=data_format)


def pad(img, padding, fill=0, padding_mode='constant', data_format='CHW'):
    """
    Pads the given paddle.Tensor on all sides with specified padding mode and fill value.

    Args:
        img (paddle.Tensor): Image to be padded.
        padding (int|list|tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill (float, optional): Pixel fill value for constant fill. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant. Default: 0. 
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default: 'constant'.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value on the edge of the image

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]

    Returns:
        paddle.Tensor: Padded image.

    """
    _assert_image_tensor(img, data_format)

    if not isinstance(padding, (numbers.Number, list, tuple)):
        raise TypeError('Got inappropriate padding arg')
    if not isinstance(fill, (numbers.Number, str, list, tuple)):
        raise TypeError('Got inappropriate fill arg')
    if not isinstance(padding_mode, str):
        raise TypeError('Got inappropriate padding_mode arg')

    if isinstance(padding, (list, tuple)) and len(padding) not in [2, 4]:
        raise ValueError(
            "Padding must be an int or a 2, or 4 element tuple, not a " +
            "{} element tuple".format(len(padding)))

    assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \
        'Padding mode should be either constant, edge, reflect or symmetric'

    if isinstance(padding, int):
        pad_left = pad_right = pad_top = pad_bottom = padding
    elif len(padding) == 2:
        pad_left = pad_right = padding[0]
        pad_top = pad_bottom = padding[1]
    else:
        pad_left = padding[0]
        pad_top = padding[1]
        pad_right = padding[2]
        pad_bottom = padding[3]

    padding = [pad_left, pad_right, pad_top, pad_bottom]

    if padding_mode == 'edge':
        padding_mode = 'replicate'
    elif padding_mode == 'symmetric':
        raise ValueError('Do not support symmetric mdoe')

    img = img.unsqueeze(0)
    #  'constant', 'reflect', 'replicate', 'circular'
    img = F.pad(img,
                pad=padding,
                mode=padding_mode,
                value=float(fill),
                data_format='N' + data_format)

    return img.squeeze(0)


def resize(img, size, interpolation='bilinear', data_format='CHW'):
    """
    Resizes the image to given size

    Args:
        input (paddle.Tensor): Image to be resized.
        size (int|list|tuple): Target size of input data, with (height, width) shape.
        interpolation (int|str, optional): Interpolation method. when use paddle backend, 
            support method are as following: 
            - "nearest"  
            - "bilinear"
            - "bicubic"
            - "trilinear"
            - "area"
            - "linear"
        data_format (str, optional): paddle.Tensor format
            - 'CHW'
            - 'HWC'
    Returns:
        paddle.Tensor: Resized image.

    """
    _assert_image_tensor(img, data_format)

    if not (isinstance(size, int) or
            (isinstance(size, (tuple, list)) and len(size) == 2)):
        raise TypeError('Got inappropriate size arg: {}'.format(size))

    if isinstance(size, int):
        w, h = _get_image_size(img, data_format)
        if (w <= h and w == size) or (h <= w and h == size):
            return img
        if w < h:
            ow = size
            oh = int(size * h / w)
        else:
            oh = size
            ow = int(size * w / h)
    else:
        oh, ow = size

    img = img.unsqueeze(0)
    img = F.interpolate(
        img,
        size=(oh, ow),
        mode=interpolation.lower(),
        data_format='N' + data_format.upper())

    return img.squeeze(0)