test_profiler.py 3.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import unittest
16
import os
17
import numpy as np
18 19 20 21
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
import paddle.fluid.layers as layers
import paddle.fluid.core as core
D
dangqingqing 已提交
22 23


24
class TestProfiler(unittest.TestCase):
X
Xin Pan 已提交
25
    def net_profiler(self, state, profile_path='/tmp/profile'):
26 27
        enable_if_gpu = state == 'GPU' or state == "All"
        if enable_if_gpu and not core.is_compiled_with_cuda():
28 29 30 31 32 33 34 35 36 37 38
            return
        startup_program = fluid.Program()
        main_program = fluid.Program()

        with fluid.program_guard(main_program, startup_program):
            image = fluid.layers.data(name='x', shape=[784], dtype='float32')
            hidden1 = fluid.layers.fc(input=image, size=128, act='relu')
            hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu')
            predict = fluid.layers.fc(input=hidden2, size=10, act='softmax')
            label = fluid.layers.data(name='y', shape=[1], dtype='int64')
            cost = fluid.layers.cross_entropy(input=predict, label=label)
Y
Yu Yang 已提交
39
            avg_cost = fluid.layers.mean(cost)
40 41
            accuracy = fluid.evaluator.Accuracy(input=predict, label=label)

42
        optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9)
43 44 45 46 47
        opts = optimizer.minimize(avg_cost, startup_program=startup_program)

        place = fluid.CPUPlace() if state == 'CPU' else fluid.CUDAPlace(0)
        exe = fluid.Executor(place)
        exe.run(startup_program)
48

49
        accuracy.reset(exe)
X
Xin Pan 已提交
50
        with profiler.profiler(state, 'total', profile_path) as prof:
51 52 53 54 55
            for iter in range(10):
                if iter == 2:
                    profiler.reset_profiler()
                x = np.random.random((32, 784)).astype("float32")
                y = np.random.randint(0, 10, (32, 1)).astype("int64")
56

57 58 59 60 61 62
                outs = exe.run(main_program,
                               feed={'x': x,
                                     'y': y},
                               fetch_list=[avg_cost] + accuracy.metrics)
                acc = np.array(outs[1])
                pass_acc = accuracy.eval(exe)
63

D
dangqingqing 已提交
64 65
    def test_cpu_profiler(self):
        self.net_profiler('CPU')
66

D
dangqingqing 已提交
67 68
    def test_cuda_profiler(self):
        self.net_profiler('GPU')
69

70
    def test_all_profiler(self):
X
Xin Pan 已提交
71 72 73
        self.net_profiler('All', '/tmp/profile_out')
        with open('/tmp/profile_out', 'r') as f:
            self.assertGreater(len(f.read()), 0)
74

D
dangqingqing 已提交
75

76 77
if __name__ == '__main__':
    unittest.main()