top_k_op.cu 10.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14
#include <limits>
武毅 已提交
15

Y
Yi Wang 已提交
16
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/top_k_op.h"
Y
Yi Wang 已提交
18
#include "paddle/fluid/platform/assert.h"
C
chengduoZH 已提交
19
#include "paddle/fluid/platform/cuda_device_function.h"
20
#include "paddle/fluid/platform/float16.h"
武毅 已提交
21 22 23 24 25

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
26
using paddle::platform::float16;
武毅 已提交
27 28 29 30

template <typename T>
struct Pair {
  __device__ __forceinline__ Pair() {}
F
fengjiayi 已提交
31
  __device__ __forceinline__ Pair(T value, int64_t id) : v(value), id(id) {}
武毅 已提交
32

F
fengjiayi 已提交
33
  __device__ __forceinline__ void set(T value, int64_t id) {
武毅 已提交
34 35 36 37
    v = value;
    id = id;
  }

38 39 40 41 42
  __device__ __forceinline__ void clear() {
    v = -INFINITY;
    id = -1;
  }

武毅 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  __device__ __forceinline__ void operator=(const Pair<T>& in) {
    v = in.v;
    id = in.id;
  }

  __device__ __forceinline__ bool operator<(const T value) const {
    return (v < value);
  }

  __device__ __forceinline__ bool operator<(const Pair<T>& in) const {
    return (v < in.v) || ((v == in.v) && (id > in.id));
  }

  __device__ __forceinline__ bool operator>(const Pair<T>& in) const {
    return (v > in.v) || ((v == in.v) && (id < in.id));
  }

  T v;
F
fengjiayi 已提交
61
  int64_t id;
武毅 已提交
62 63
};

64 65 66 67 68 69
template <>
__device__ __forceinline__ void Pair<float16>::clear() {
  v = platform::raw_uint16_to_float16(0x400);
  id = -1;
}

武毅 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
template <typename T>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p,
                                      int beam_size) {
  for (int k = beam_size - 2; k >= 0; k--) {
    if (topk[k] < p) {
      topk[k + 1] = topk[k];
    } else {
      topk[k + 1] = p;
      return;
    }
  }
  topk[0] = p;
}

template <typename T, int beam_size>
__device__ __forceinline__ void AddTo(Pair<T> topk[], const Pair<T>& p) {
  for (int k = beam_size - 2; k >= 0; k--) {
    if (topk[k] < p) {
      topk[k + 1] = topk[k];
    } else {
      topk[k + 1] = p;
      return;
    }
  }
  topk[0] = p;
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
                                        int dim, int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < src[idx]) {
      Pair<T> tmp(src[idx], idx);
      AddTo<T>(topk, tmp, beam_size);
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* src, int idx,
                                        int dim, const Pair<T>& max,
                                        int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < src[idx]) {
      Pair<T> tmp(src[idx], idx);
      if (tmp < max) {
        AddTo<T>(topk, tmp, beam_size);
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
                                        int idx, int dim, int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < val[idx]) {
      Pair<T> tmp(val[idx], col[idx]);
      AddTo<T>(topk, tmp, beam_size);
    }
    idx += BlockSize;
  }
}

template <typename T, int BlockSize>
__device__ __forceinline__ void GetTopK(Pair<T> topk[], const T* val, int* col,
                                        int idx, int dim, const Pair<T>& max,
                                        int beam_size) {
  while (idx < dim) {
    if (topk[beam_size - 1] < val[idx]) {
      Pair<T> tmp(val[idx], col[idx]);
      if (tmp < max) {
        AddTo<T>(topk, tmp, beam_size);
      }
    }
    idx += BlockSize;
  }
}

template <typename T, int MaxLength, int BlockSize>
152
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
武毅 已提交
153
                                              int beam_size, const T* src,
154 155
                                              bool* firstStep, bool* is_empty,
                                              Pair<T>* max, int dim,
武毅 已提交
156
                                              const int tid) {
157 158 159 160
  if (*beam > 0) {
    int length = (*beam) < beam_size ? *beam : beam_size;
    if (*firstStep) {
      *firstStep = false;
武毅 已提交
161 162 163
      GetTopK<T, BlockSize>(topk, src, tid, dim, length);
    } else {
      for (int k = 0; k < MaxLength; k++) {
164 165
        if (k < MaxLength - (*beam)) {
          topk[k] = topk[k + *beam];
武毅 已提交
166
        } else {
167
          topk[k].clear();
武毅 已提交
168 169
        }
      }
170 171
      if (!(*is_empty)) {
        GetTopK<T, BlockSize>(topk + MaxLength - *beam, src, tid, dim, *max,
武毅 已提交
172 173 174 175
                              length);
      }
    }

176
    *max = topk[MaxLength - 1];
177
    if ((*max).v == static_cast<T>(-1)) *is_empty = true;
178
    *beam = 0;
武毅 已提交
179 180 181 182
  }
}

template <typename T, int MaxLength, int BlockSize>
183
__device__ __forceinline__ void ThreadGetTopK(Pair<T> topk[], int* beam,
武毅 已提交
184
                                              int beam_size, const T* val,
185 186
                                              int* col, bool* firstStep,
                                              bool* is_empty, Pair<T>* max,
武毅 已提交
187
                                              int dim, const int tid) {
188 189 190 191
  if (*beam > 0) {
    int length = (*beam) < beam_size ? *beam : beam_size;
    if (*firstStep) {
      *firstStep = false;
武毅 已提交
192 193 194
      GetTopK<T, BlockSize>(topk, val, col, tid, dim, length);
    } else {
      for (int k = 0; k < MaxLength; k++) {
195 196
        if (k < MaxLength - *beam) {
          topk[k] = topk[k + *beam];
武毅 已提交
197
        } else {
198
          topk[k].set(std::numeric_limits<T>::min(), -1);
武毅 已提交
199 200
        }
      }
201 202
      if (!(*is_empty)) {
        GetTopK<T, BlockSize>(topk + MaxLength - *beam, val, col, tid, dim, max,
武毅 已提交
203 204 205 206
                              length);
      }
    }

207 208 209
    *max = topk[MaxLength - 1];
    if ((*max).v == -1) *is_empty = true;
    *beam = 0;
武毅 已提交
210 211 212 213 214 215
  }
}

template <typename T, int MaxLength, int BlockSize>
__device__ __forceinline__ void BlockReduce(Pair<T>* sh_topk, int* maxid,
                                            Pair<T> topk[], T** topVal,
216
                                            int64_t** topIds, int* beam, int* k,
武毅 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
                                            const int tid, const int warp) {
  while (true) {
    __syncthreads();
    if (tid < BlockSize / 2) {
      if (sh_topk[tid] < sh_topk[tid + BlockSize / 2]) {
        maxid[tid] = tid + BlockSize / 2;
      } else {
        maxid[tid] = tid;
      }
    }
    __syncthreads();
    for (int stride = BlockSize / 4; stride > 0; stride = stride / 2) {
      if (tid < stride) {
        if (sh_topk[maxid[tid]] < sh_topk[maxid[tid + stride]]) {
          maxid[tid] = maxid[tid + stride];
        }
      }
      __syncthreads();
    }
    __syncthreads();

    if (tid == 0) {
      **topVal = sh_topk[maxid[0]].v;
      **topIds = sh_topk[maxid[0]].id;
      (*topVal)++;
      (*topIds)++;
    }
244 245
    if (tid == maxid[0]) (*beam)++;
    if (--(*k) == 0) break;
武毅 已提交
246 247 248
    __syncthreads();

    if (tid == maxid[0]) {
249 250
      if (*beam < MaxLength) {
        sh_topk[tid] = topk[*beam];
武毅 已提交
251 252
      }
    }
C
chengduoZH 已提交
253
    // NOTE(zcd): temporary solution
C
chengduoZH 已提交
254 255 256
    unsigned mask = 0u;
    CREATE_SHFL_MASK(mask, true);

武毅 已提交
257
    if (maxid[0] / 32 == warp) {
C
chengduoZH 已提交
258 259
      if (platform::CudaShuffleSync(mask, *beam, (maxid[0]) % 32, 32) ==
          MaxLength)
C
chengduoZH 已提交
260
        break;
武毅 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273
    }
  }
}

/**
 * Each block compute one sample.
 * In a block:
 * 1. every thread get top MaxLength value;
 * 2. merge to sh_topk, block reduce and get max value;
 * 3. go to the second setp, until one thread's topk value is null;
 * 4. go to the first setp, until get the topk value.
 */
template <typename T, int MaxLength, int BlockSize>
F
fengjiayi 已提交
274
__global__ void KeMatrixTopK(T* output, int output_stride, int64_t* indices,
武毅 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                             const T* src, int lds, int dim, int k) {
  __shared__ Pair<T> sh_topk[BlockSize];
  __shared__ int maxid[BlockSize / 2];
  const int tid = threadIdx.x;
  const int warp = threadIdx.x / 32;
  output += blockIdx.x * output_stride;
  indices += blockIdx.x * k;

  Pair<T> topk[MaxLength];
  int beam = MaxLength;
  Pair<T> max;
  bool is_empty = false;
  bool firststep = true;

  for (int k = 0; k < MaxLength; k++) {
290
    topk[k].clear();
武毅 已提交
291 292
  }
  while (k) {
293 294 295
    ThreadGetTopK<T, MaxLength, BlockSize>(topk, &beam, k,
                                           src + blockIdx.x * lds, &firststep,
                                           &is_empty, &max, dim, tid);
武毅 已提交
296 297 298

    sh_topk[tid] = topk[0];
    BlockReduce<T, MaxLength, BlockSize>(sh_topk, maxid, topk, &output,
299
                                         &indices, &beam, &k, tid, warp);
武毅 已提交
300 301 302 303
  }
}

template <typename T>
Y
Yu Yang 已提交
304
class TopkOpCUDAKernel : public framework::OpKernel<T> {
武毅 已提交
305 306 307
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
308
                   "It must use CUDAPlace.");
武毅 已提交
309 310 311 312 313 314 315 316 317
    auto* input = ctx.Input<Tensor>("X");
    auto* output = ctx.Output<Tensor>("Out");
    auto* indices = ctx.Output<Tensor>("Indices");
    size_t k = static_cast<int>(ctx.Attr<int>("k"));

    const T* input_data = input->data<T>();

    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    // FIXME(typhoonzero): data is always converted to type T?
F
fengjiayi 已提交
318
    int64_t* indices_data = indices->mutable_data<int64_t>(ctx.GetPlace());
武毅 已提交
319 320 321 322 323 324 325 326 327 328 329

    size_t input_height = input->dims()[0];
    size_t input_width = input->dims()[1];
    if (k > input_width) k = input_width;

    // NOTE: pass lds and dim same to input width.
    // NOTE: old matrix implementation of stride is different to eigen.
    // TODO(typhoonzero): refine this kernel.
    dim3 threads(256, 1);
    dim3 grid(input_height, 1);

C
caoying03 已提交
330 331 332
    KeMatrixTopK<T, 5, 256><<<
        grid, threads, 0, reinterpret_cast<const platform::CUDADeviceContext&>(
                              ctx.device_context())
333 334 335
                              .stream()>>>(
        output_data, output->dims()[1], indices_data, input_data, input_width,
        input_width, static_cast<int>(k));
武毅 已提交
336 337 338 339 340 341
  }
};

}  // namespace operators
}  // namespace paddle

342 343 344 345
REGISTER_OP_CUDA_KERNEL(
    top_k, paddle::operators::TopkOpCUDAKernel<float>,
    paddle::operators::TopkOpCUDAKernel<double>,
    paddle::operators::TopkOpCUDAKernel<paddle::platform::float16>);