analyzer_seq_pool1_tester.cc 11.1 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

T
tensor-tang 已提交
15
#include <algorithm>
T
tensor-tang 已提交
16 17 18 19 20 21 22 23
#include <fstream>
#include <iostream>
#include "paddle/fluid/inference/tests/api/tester_helper.h"

namespace paddle {
namespace inference {
namespace analysis {

24 25 26 27 28 29
// diff: similarity_norm.tmp_0, for speed: fc_4.tmp_1
static const char out_var_name[] = "reduce_sum_0.tmp_0";

// for diff: 154, for speed 111
constexpr int num_slots = 154;

T
tensor-tang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
struct OneSlotInBatch {
  std::string name;
  std::vector<std::vector<float>> data;
  std::vector<int> shape;
  std::vector<size_t> lod;
};

struct DataRecord {
  std::vector<std::vector<OneSlotInBatch>> batched_data;
  std::map<std::string, std::vector<std::vector<float>>> datasets;
  size_t batch_iter{0}, num_samples;  // total number of samples

  DataRecord() = default;
  explicit DataRecord(const std::string &path, int batch_size = 1) {
    Load(path);
    Prepare(batch_size);
  }

  void Load(const std::string &path) {
    std::ifstream file(path);
    std::string line;
    int num_lines = 0;
    while (std::getline(file, line)) {
      num_lines++;
      std::vector<std::string> data;
      split(line, '\t', &data);
      std::vector<float> slot_data;
      split_to_float(data[1], ' ', &slot_data);
      std::string name = data[0];
      PADDLE_ENFORCE_EQ(slot_data.size() % 11, 0,
                        "line %d, %s should be divisible", num_lines, name);
      datasets[name].emplace_back(std::move(slot_data));
    }
    num_samples = num_lines / num_slots;
    PADDLE_ENFORCE_EQ(num_samples * num_slots, static_cast<size_t>(num_lines),
                      "num samples should be divisible");
    PADDLE_ENFORCE_GT(num_samples, 0);
  }

  void Prepare(int bs) {
    for (auto it = datasets.begin(); it != datasets.end(); ++it) {
      PADDLE_ENFORCE_EQ(it->second.size(), num_samples,
                        "size of each slot should be equal");
    }
    size_t num_batches = num_samples / bs;
    EXPECT_GT(num_batches, 0);
    batched_data.resize(num_batches);
    for (auto &one_batch : batched_data) {
      one_batch.resize(datasets.size());
      size_t i = 0;
      for (auto it = datasets.begin(); it != datasets.end(); ++it) {
        auto &slot = one_batch[i];
        slot.name = it->first;
        slot.data.resize(bs);
        slot.lod.resize(bs + 1);
        slot.lod[0] = 0;
        auto &lod = slot.lod;
        auto &datas = it->second;
        for (int k = 0; k < bs; ++k) {
          size_t id = k + batch_iter * bs;
          std::copy(datas[id].begin(), datas[id].end(),
                    std::back_inserter(slot.data[k]));
          size_t len = datas[id].size() / 11;
          PADDLE_ENFORCE_EQ(len * 11, datas[id].size(),
                            "%s %d size should be divisible", slot.name, id);
          lod[k + 1] = lod[k] + len;
        }
        slot.shape.assign({static_cast<int>(lod[bs]), 11});
        i++;
      }
    }
  }

  const std::vector<OneSlotInBatch> &NextBatch() {
    if (batch_iter >= batched_data.size() - 1) {
      batch_iter = -1;
    }
    return batched_data[++batch_iter];
  }
};

static void TensorAssignSlot(PaddleTensor *tensor, const OneSlotInBatch &slot) {
  tensor->name = slot.name + "_embed";
  tensor->shape = slot.shape;
  tensor->dtype = PaddleDType::FLOAT32;
  tensor->lod.clear();
  tensor->lod.emplace_back(slot.lod);
  TensorAssignData(tensor, slot.data);
}

void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
  const auto &one_batch = data->NextBatch();
  input_slots->resize(one_batch.size());
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    TensorAssignSlot(&((*input_slots)[i]), slot);
  }
}

T
tensor-tang 已提交
129
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
T
tensor-tang 已提交
130 131 132 133 134 135 136 137 138
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  std::vector<PaddleTensor> input_slots;
  int epoch = FLAGS_test_all_data ? data.batched_data.size() : 1;
  LOG(INFO) << "number of samples: "
            << data.batched_data.size() * FLAGS_batch_size;
  for (int bid = 0; bid < epoch; ++bid) {
    PrepareInputs(&input_slots, &data);
    (*inputs).emplace_back(input_slots);
  }
T
tensor-tang 已提交
139 140
}

T
tensor-tang 已提交
141 142 143 144
void SetConfig(AnalysisConfig *cfg, bool use_mkldnn = false) {
  cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
  cfg->DisableGpu();
  cfg->SwitchSpecifyInputNames();
Y
Yan Chunwei 已提交
145
  cfg->SwitchIrDebug();
T
tensor-tang 已提交
146 147 148 149 150 151
  cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
  if (use_mkldnn) {
    cfg->EnableMKLDNN();
  }
}

T
tensor-tang 已提交
152 153
void profile(bool use_mkldnn = false) {
  AnalysisConfig cfg;
T
tensor-tang 已提交
154
  SetConfig(&cfg, use_mkldnn);
T
tensor-tang 已提交
155 156 157 158 159 160 161 162 163 164

  std::vector<PaddleTensor> outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  TestPrediction(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                 input_slots_all, &outputs, FLAGS_num_threads);
}

TEST(Analyzer_seq_pool1, profile) { profile(); }

T
tensor-tang 已提交
165 166 167 168 169 170 171 172 173 174 175
// Compare result of NativeConfig and AnalysisConfig
TEST(Analyzer_seq_pool1, compare) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareNativeAndAnalysis(
      reinterpret_cast<const PaddlePredictor::Config *>(&cfg), input_slots_all);
}

176 177 178 179 180 181 182 183 184 185 186
// Compare Deterministic result
TEST(Analyzer_seq_pool1, compare_determine) {
  AnalysisConfig cfg;
  SetConfig(&cfg);

  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  CompareDeterministic(reinterpret_cast<const PaddlePredictor::Config *>(&cfg),
                       input_slots_all);
}

187
void analysis_fuse_statis(bool use_zerocopy) {
T
tensor-tang 已提交
188 189
  AnalysisConfig cfg;
  SetConfig(&cfg);
190
  cfg.SwitchUseFeedFetchOps(!use_zerocopy);
T
tensor-tang 已提交
191 192
  int num_ops;
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(cfg);
193
  auto fuse_statis = GetFuseStatis(predictor.get(), &num_ops);
T
tensor-tang 已提交
194
  ASSERT_TRUE(fuse_statis.count("fc_fuse"));
T
tensor-tang 已提交
195
  ASSERT_TRUE(fuse_statis.count("seqpool_concat_fuse"));
196 197 198
  ASSERT_TRUE(fuse_statis.count("squared_mat_sub_fuse"));
  ASSERT_TRUE(fuse_statis.count("repeated_fc_relu_fuse"));
  ASSERT_EQ(fuse_statis.at("fc_fuse"), 10);
T
tensor-tang 已提交
199
  EXPECT_EQ(fuse_statis.at("seqpool_concat_fuse"), 2);
200 201
  EXPECT_EQ(fuse_statis.at("squared_mat_sub_fuse"), 2);
  EXPECT_EQ(fuse_statis.at("repeated_fc_relu_fuse"), 2);
T
tensor-tang 已提交
202
  LOG(INFO) << "num_ops: " << num_ops;
203
  EXPECT_EQ(num_ops, 171);
T
tensor-tang 已提交
204 205
}

206 207 208
// Check the fuse status
TEST(Analyzer_seq_pool1, fuse_statis) { analysis_fuse_statis(false); }

T
tensor-tang 已提交
209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
void PrepareZeroCopyInputs(
    const std::unique_ptr<PaddlePredictor> &predictor,
    std::vector<std::unique_ptr<ZeroCopyTensor>> *inputs) {
  DataRecord data(FLAGS_infer_data, FLAGS_batch_size);
  // only feed one batch
  const auto &one_batch = data.NextBatch();
  inputs->clear();
  for (size_t i = 0; i < one_batch.size(); ++i) {
    auto &slot = one_batch[i];
    auto tensor = predictor->GetInputTensor(slot.name + "_embed");
    tensor->Reshape(slot.shape);
    tensor->SetLoD({slot.lod});
    ZeroCopyTensorAssignData<float>(tensor.get(), slot.data);
    inputs->emplace_back(std::move(tensor));
  }
}

226 227
// return the output values
std::vector<float> zerocopy_profile(int repeat_times) {
T
tensor-tang 已提交
228 229 230 231 232 233
  AnalysisConfig config;
  SetConfig(&config);
  config.SwitchUseFeedFetchOps(false);
  auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
  PrepareZeroCopyInputs(predictor, &inputs);
234
  auto output_tensor = predictor->GetOutputTensor(out_var_name);
T
tensor-tang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  Timer timer;
  LOG(INFO) << "Warm up run...";
  timer.tic();
  predictor->ZeroCopyRun();
  PrintTime(FLAGS_batch_size, 1, 1, 0, timer.toc(), 1);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
  LOG(INFO) << "Run " << repeat_times << " times...";
  timer.tic();
  for (int i = 0; i < repeat_times; i++) {
    predictor->ZeroCopyRun();
  }
  PrintTime(FLAGS_batch_size, repeat_times, 1, 0, timer.toc() / repeat_times,
            1);
250

251
  LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(*output_tensor);
252 253 254 255 256 257 258 259
  PaddlePlace place;
  int output_size{0};
  auto *pdata = output_tensor->data<float>(&place, &output_size);
  std::vector<float> res(output_size);
  for (int i = 0; i < output_size; ++i) {
    res[i] = pdata[i];
  }
  return res;
T
tensor-tang 已提交
260 261 262 263
}

TEST(Analyzer_seq_pool1, zerocopy_profile) { zerocopy_profile(FLAGS_repeat); }

264 265 266 267 268 269 270 271 272 273
TEST(Analyzer_seq_pool1, zerocopy_profile_threads) {
  AnalysisConfig config;
  SetConfig(&config);
  config.SwitchUseFeedFetchOps(false);

  auto base_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
  double total_time_of_threads{0};
  std::vector<std::thread> threads;

  for (int tid = 0; tid < FLAGS_num_threads; tid++) {
T
Tao Luo 已提交
274 275 276 277
    threads.emplace_back([&, tid] {
      // To ensure the thread binding correctly,
      // please clone inside the threadpool.
      auto predictor = base_predictor->Clone();
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
      std::vector<std::unique_ptr<ZeroCopyTensor>> inputs;
      PrepareZeroCopyInputs(predictor, &inputs);
      auto output_tensor = predictor->GetOutputTensor(out_var_name);
      Timer timer;
      double total_time{0};

      LOG(INFO) << "Warm up run...";
      timer.tic();
      predictor->ZeroCopyRun();
      PrintTime(FLAGS_batch_size, 1, FLAGS_num_threads, tid, timer.toc(), 1);
      if (FLAGS_profile) {
        paddle::platform::ResetProfiler();
      }
      int repeat_times = FLAGS_repeat;
      LOG(INFO) << "Run " << repeat_times << " times...";
      timer.tic();

      for (int i = 0; i < repeat_times; i++) {
        predictor->ZeroCopyRun();
      }
      total_time += timer.toc();
      total_time_of_threads += total_time;

      LOG(INFO) << "thread time: " << total_time / repeat_times;
    });
  }

  for (auto &t : threads) {
    t.join();
  }

  LOG(INFO) << "average time: "
            << total_time_of_threads / FLAGS_num_threads / FLAGS_repeat;
}

313 314 315
TEST(Analyzer_seq_pool1, zerocopy_fuse_statis) { analysis_fuse_statis(true); }

TEST(Analyzer_seq_pool1, zerocopy_compare_native) {
T
tensor-tang 已提交
316 317
  AnalysisConfig config;
  SetConfig(&config);
318 319 320 321 322 323 324 325 326 327 328 329 330
  config.SwitchUseFeedFetchOps(true);
  auto predictor = CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
  std::vector<PaddleTensor> native_outputs;
  std::vector<std::vector<PaddleTensor>> input_slots_all;
  SetInput(&input_slots_all);
  ASSERT_TRUE(predictor->Run(input_slots_all[0], &native_outputs));
  EXPECT_EQ(native_outputs.size(), 1UL);

  auto zerocopy_output = zerocopy_profile(1);
  EXPECT_EQ(zerocopy_output.size() * sizeof(float),
            native_outputs.front().data.length());
  auto *native_data = static_cast<float *>(native_outputs.front().data.data());
  for (size_t i = 0; i < zerocopy_output.size(); ++i) {
T
tensor-tang 已提交
331 332 333
    EXPECT_LT(
        std::fabs((zerocopy_output[i] - native_data[i]) / zerocopy_output[i]),
        1e-3);
334
  }
T
tensor-tang 已提交
335 336
}

T
tensor-tang 已提交
337 338 339
}  // namespace analysis
}  // namespace inference
}  // namespace paddle