engine.h 9.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <NvInfer.h>
18
#include <map>
Y
Yan Chunwei 已提交
19
#include <memory>
20
#include <string>
Y
Yan Chunwei 已提交
21
#include <unordered_map>
22
#include <unordered_set>
23
#include <utility>
24
#include <vector>
N
nhzlx 已提交
25
#include "paddle/fluid/framework/tensor.h"
26
#include "paddle/fluid/framework/tensor_util.h"
Z
Zhaolong Xing 已提交
27
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
Y
Yan Chunwei 已提交
28 29
#include "paddle/fluid/inference/engine.h"
#include "paddle/fluid/inference/tensorrt/helper.h"
30
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin.h"
N
nhzlx 已提交
31
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"
N
nhzlx 已提交
32
#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
33
#include "paddle/fluid/inference/utils/singleton.h"
Y
Yan Chunwei 已提交
34 35 36 37 38

namespace paddle {
namespace inference {
namespace tensorrt {

N
nhzlx 已提交
39
class TRTInt8Calibrator;
Y
Yan Chunwei 已提交
40 41 42 43
/*
 * TensorRT Engine.
 *
 * There are two alternative ways to use it, one is  to build from a paddle
44
 * protobuf model, another way is to manually construct the network.
Y
Yan Chunwei 已提交
45
 */
46 47 48
class TensorRTEngine {
  using DescType = ::paddle::framework::proto::BlockDesc;

Y
Yan Chunwei 已提交
49 50 51 52
 public:
  // Weight is model parameter.
  class Weight {
   public:
53
    Weight() = default;
54
    Weight(nvinfer1::DataType dtype, void* value, size_t num_elem) {
Y
Yan Chunwei 已提交
55 56 57 58
      w_.type = dtype;
      w_.values = value;
      w_.count = num_elem;
    }
59
    const nvinfer1::Weights& get() { return w_; }
Y
Yan Chunwei 已提交
60

61 62
    std::vector<int64_t> dims;

Y
Yan Chunwei 已提交
63 64 65 66
   private:
    nvinfer1::Weights w_;
  };

Z
Zhaolong Xing 已提交
67 68 69 70 71
  TensorRTEngine(
      int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
      nvinfer1::ILogger& logger = NaiveLogger::Global())
Y
Yan Chunwei 已提交
72 73
      : max_batch_(max_batch),
        max_workspace_(max_workspace),
Z
Zhaolong Xing 已提交
74
        precision_(precision),
N
nhzlx 已提交
75
        calibrator_(calibrator),
N
nhzlx 已提交
76
        device_id_(device_id),
77
        logger_(logger) {}
Y
Yan Chunwei 已提交
78

79
  ~TensorRTEngine() {}
Y
Yan Chunwei 已提交
80 81

  // TODO(Superjomn) implement it later when graph segmentation is supported.
82
  void Build(const DescType& paddle_model);
Y
Yan Chunwei 已提交
83

84
  void Execute(int batch_size, std::vector<void*>* buffers,
85
               cudaStream_t stream = nullptr);
Y
Yan Chunwei 已提交
86 87 88 89

  // Initialize the inference network, so that TensorRT layers can add to this
  // network.
  void InitNetwork() {
N
nhzlx 已提交
90
    freshDeviceId();
91
    infer_builder_.reset(createInferBuilder(&logger_));
Y
Yan Chunwei 已提交
92 93
    infer_network_.reset(infer_builder_->createNetwork());
  }
94
  // After finishing adding ops, freeze this network and creates the execution
Y
Yan Chunwei 已提交
95 96 97
  // environment.
  void FreezeNetwork();

98
  // Add an input and set its name, data type and dimension.
Y
Yan Chunwei 已提交
99 100 101 102 103 104 105
  nvinfer1::ITensor* DeclareInput(const std::string& name,
                                  nvinfer1::DataType dtype,
                                  const nvinfer1::Dims& dim);
  // Set the offset-th output from a layer as the network's output, and set its
  // name.
  void DeclareOutput(const nvinfer1::ILayer* layer, int offset,
                     const std::string& name);
L
Luo Tao 已提交
106 107
  // Set the itensor_map_[name] as the network's output, and set its name.
  void DeclareOutput(const std::string& name);
N
nhzlx 已提交
108 109
  // Check if the ITensor has been declared
  bool HasDeclared(const std::string& name);
Y
Yan Chunwei 已提交
110

L
Luo Tao 已提交
111 112 113
  void SetITensor(const std::string& name, nvinfer1::ITensor* tensor);
  // Get an ITensor called name.
  nvinfer1::ITensor* GetITensor(const std::string& name);
Y
Yan Chunwei 已提交
114 115 116

  nvinfer1::ICudaEngine* engine() { return infer_engine_.get(); }
  nvinfer1::INetworkDefinition* network() { return infer_network_.get(); }
N
nhzlx 已提交
117 118 119 120 121 122 123 124 125

  nvinfer1::IHostMemory* Serialize() {
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "You should build engine first and then serialize");
    ihost_memory_.reset(infer_engine_->serialize());
    return ihost_memory_.get();
  }

  void Deserialize(const std::string& engine_serialized_data) {
N
nhzlx 已提交
126
    freshDeviceId();
N
nhzlx 已提交
127 128
    infer_ptr<nvinfer1::IRuntime> runtime(createInferRuntime(&logger_));
    infer_engine_.reset(runtime->deserializeCudaEngine(
N
nhzlx 已提交
129 130
        engine_serialized_data.c_str(), engine_serialized_data.size(),
        &inference::Singleton<plugin::PluginFactoryTensorRT>::Global()));
N
nhzlx 已提交
131 132 133 134
    PADDLE_ENFORCE(infer_engine_ != nullptr,
                   "build cuda engine failed when deserialize engine info.!");
  }

135 136
  void SetRuntimeBatch(size_t batch_size);
  int GetRuntimeBatch();
N
nhzlx 已提交
137
  int GetDeviceId() { return device_id_; }
N
nhzlx 已提交
138
  nvinfer1::IPluginLayer* AddPlugin(nvinfer1::ITensor* const* inputs,
139
                                    int num_inputs, plugin::PluginTensorRT*);
140 141 142 143 144 145 146
  void SetTensorDynamicRange(nvinfer1::ITensor* tensor, float range) {
    quant_dynamic_range_[tensor] = range;
  }

  float* GetWeightCPUData(const std::string& name,
                          framework::Tensor* weight_tensor, bool enable_int8,
                          const std::vector<float>& scale = {});
N
nhzlx 已提交
147 148 149 150 151 152 153 154

  // A pointer to CPU memory is needed of the TRT weight.
  // Before TRT runs, fluid loads weight into GPU storage.
  // so we need to copy the weights from GPU to CPU in our op converter.
  // We use a map to store these weights for the weight memory is not released
  // in advance, which affecting the construction of TRT Op.
  std::unordered_map<std::string /*name*/, std::unique_ptr<framework::Tensor>>
      weight_map;
Y
Yan Chunwei 已提交
155

156 157 158 159 160 161
  // When setting weight_map, a self-increasing suffix is needed for the names
  // so as to avoid repeatedly setting weights with the same name.
  void SetWeights(std::string w_name,
                  std::unique_ptr<framework::Tensor> w_tensor) {
    static int suffix_counter = 0;
    std::string suffix = std::to_string(suffix_counter);
P
Pei Yang 已提交
162 163
    std::string splitter = "__";
    weight_map[w_name + splitter + suffix] = std::move(w_tensor);
164 165 166
    suffix_counter += 1;
  }

167 168 169 170 171 172
  void ClearWeights() {
    for (auto& weight_pair : weight_map) {
      weight_pair.second.reset(nullptr);
    }
  }

Y
Yan Chunwei 已提交
173
 private:
N
nhzlx 已提交
174 175 176 177 178
  // Each ICudaEngine object is bound to a specific GPU when it is instantiated,
  // ensure that the thread is associated with the correct device by calling
  // freshDeviceId().
  void freshDeviceId();

Y
Yan Chunwei 已提交
179 180
  // the max batch size
  int max_batch_;
181 182
  // the runtime batch size
  static int runtime_batch_;
Y
Yan Chunwei 已提交
183 184
  // the max memory size the engine uses
  int max_workspace_;
185

Z
Zhaolong Xing 已提交
186
  AnalysisConfig::Precision precision_;
N
nhzlx 已提交
187 188 189
  TRTInt8Calibrator* calibrator_;
  // batch size of the current data, will be updated each Executation.
  int batch_size_{-1};
N
nhzlx 已提交
190

N
nhzlx 已提交
191
  int device_id_;
Y
Yan Chunwei 已提交
192 193 194 195
  nvinfer1::ILogger& logger_;

  // max data size for the buffers.
  std::unordered_map<std::string /*name*/, size_t /*max size*/> buffer_sizes_;
L
Luo Tao 已提交
196 197
  std::unordered_map<std::string /*name*/, nvinfer1::ITensor* /*ITensor*/>
      itensor_map_;
198

199
  std::vector<std::unique_ptr<plugin::PluginTensorRT>> owned_plugin_;
Y
Yan Chunwei 已提交
200 201 202 203

  // TensorRT related internal members
  template <typename T>
  struct Destroyer {
204 205 206 207 208
    void operator()(T* x) {
      if (x) {
        x->destroy();
      }
    }
Y
Yan Chunwei 已提交
209 210 211 212 213 214
  };
  template <typename T>
  using infer_ptr = std::unique_ptr<T, Destroyer<T>>;
  infer_ptr<nvinfer1::IBuilder> infer_builder_;
  infer_ptr<nvinfer1::INetworkDefinition> infer_network_;
  infer_ptr<nvinfer1::ICudaEngine> infer_engine_;
215 216
  std::unordered_map<std::thread::id, infer_ptr<nvinfer1::IExecutionContext>>
      infer_context_;
N
nhzlx 已提交
217
  infer_ptr<nvinfer1::IHostMemory> ihost_memory_;
218
  std::unordered_map<nvinfer1::ITensor*, float> quant_dynamic_range_;
219
  std::mutex mutex_;
Y
Yan Chunwei 已提交
220 221
};  // class TensorRTEngine

222 223 224 225
#define IS_TRT_VERSION_GE(version)                       \
  ((NV_TENSORRT_MAJOR * 1000 + NV_TENSORRT_MINOR * 100 + \
    NV_TENSORRT_PATCH * 10 + NV_TENSORRT_BUILD) >= version)

226
// Add a layer__ into engine__ with args ARGS.
Y
Yan Chunwei 已提交
227 228 229 230 231 232 233 234 235
// For example:
//
// Reference
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#charRNN_define_network
//
// will add a fully connected layer into the engine.
// TensorRT has too many layers, so that is not wise to add member functions for
// them, and an macro like this is more extensible when underlying TensorRT
// library add new layer supports.
236 237
#define TRT_ENGINE_ADD_LAYER(engine__, layer__, ...) \
  engine__->network()->add##layer__(__VA_ARGS__);
Y
Yan Chunwei 已提交
238

239 240 241 242 243 244 245 246 247 248 249 250
class TRTEngineManager {
 public:
  bool Empty() const { return engines_.size() == 0; }
  bool Has(const std::string& name) const {
    if (engines_.count(name) == 0) return false;
    return engines_.at(name).get() != nullptr;
  }

  TensorRTEngine* Get(const std::string& name) const {
    return engines_.at(name).get();
  }

Z
Zhaolong Xing 已提交
251 252 253 254 255 256
  TensorRTEngine* Create(
      std::string name, int max_batch, int max_workspace,
      AnalysisConfig::Precision precision = AnalysisConfig::Precision::kFloat32,
      TRTInt8Calibrator* calibrator = nullptr, int device_id = 0,
      nvinfer1::ILogger& logger = NaiveLogger::Global()) {
    auto* p = new TensorRTEngine(max_batch, max_workspace, precision,
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
                                 calibrator, device_id, logger);
    engines_[name].reset(p);
    return p;
  }

  void DeleteAll() {
    for (auto& item : engines_) {
      item.second.reset(nullptr);
    }
  }

 private:
  std::unordered_map<std::string, std::unique_ptr<TensorRTEngine>> engines_;
};

Y
Yan Chunwei 已提交
272 273 274
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle