test_seq_project.py 7.6 KB
Newer Older
C
chengduoZH 已提交
1 2
import unittest
import numpy as np
3
import random
C
chengduoZH 已提交
4 5 6 7 8 9 10 11 12 13 14 15 16 17
from op_test import OpTest


class TestSeqProject(OpTest):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_project'
        # one level, batch size
        x = np.random.uniform(
            0.1, 1, [self.input_size[0], self.input_size[1]]).astype('float32')

        self.begin_pad = np.max([0, -self.context_start])
        self.end_pad = np.max([0, self.context_start + self.context_length - 1])
        self.total_pad = self.begin_pad + self.end_pad
C
chengduoZH 已提交
18 19 20 21
        # w = np.array(range(self.total_pad * self.input_size[1]))
        # w.shape = self.total_pad, self.input_size[1]
        w = np.random.uniform(
            0.1, 1, [self.total_pad, self.input_size[1]]).astype('float32')
22 23 24 25
        self.inputs = {
            'X': (x, self.lod),
            'PaddingData': (w, [[0, self.total_pad]])
        }
C
chengduoZH 已提交
26 27 28
        self.attrs = {
            'context_start': self.context_start,
            'context_length': self.context_length,
29 30
            'padding_trainable': self.padding_trainable,
            'context_stride': self.context_stride
C
chengduoZH 已提交
31 32 33 34 35 36 37 38
        }
        out = np.zeros((self.input_size[0], self.input_size[1] *
                        self.context_length)).astype('float32')
        self.outputs = {'Out': out}
        self.compute()

    def compute(self):
        x, lod = self.inputs['X']
39
        w, _ = self.inputs['PaddingData']
C
chengduoZH 已提交
40 41
        out = self.outputs['Out']
        lod = lod[0]
42
        begin_pad = np.max([0, -self.context_start])
C
chengduoZH 已提交
43 44 45 46 47 48 49 50 51 52

        for i in range(len(lod) - 1):
            for j in range(self.context_length):
                in_begin = lod[i] + self.context_start + j
                in_end = lod[i + 1] + self.context_start + j
                out_begin = lod[i]
                out_end = lod[i + 1]
                if in_begin < lod[i]:
                    pad_size = np.min([lod[i] - in_begin, lod[i + 1] - lod[i]])
                    if self.padding_trainable:
53
                        sub_w = w[j:j + pad_size, :]
C
chengduoZH 已提交
54 55 56 57 58 59 60 61 62
                        out[lod[i]:lod[i] + pad_size, j * self.input_size[1]:(
                            j + 1) * self.input_size[1]] = sub_w
                    out_begin = lod[i] + pad_size
                    in_begin = lod[i]

                if in_end > lod[i + 1]:
                    pad_size = np.min(
                        [in_end - lod[i + 1], lod[i + 1] - lod[i]])
                    if self.padding_trainable:
63 64
                        sub_w = w[begin_pad + self.context_start + j - pad_size:
                                  begin_pad + self.context_start + j, :]
C
chengduoZH 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77
                        out[lod[i + 1] - pad_size:lod[i + 1], j * self.
                            input_size[1]:(j + 1) * self.input_size[1]] = sub_w
                    in_end = lod[i + 1]
                    out_end = lod[i + 1] - pad_size
                if in_end <= in_begin:
                    continue

                in_sub = x[in_begin:in_end, :]
                out[out_begin:out_end, j * self.input_size[1]:(j + 1) *
                    self.input_size[1]] += in_sub

    def init_test_case(self):
        self.op_type = "sequence_project"
C
chengduoZH 已提交
78
        self.input_row = 11
C
chengduoZH 已提交
79 80
        self.context_start = -1
        self.context_length = 3
81 82
        self.padding_trainable = True
        self.context_stride = 1
C
chengduoZH 已提交
83

C
chengduoZH 已提交
84 85 86
        self.input_size = [self.input_row, 23]
        self.lod = [[0, 4, 5, 8, self.input_row]]

C
chengduoZH 已提交
87 88 89
    def test_check_output(self):
        self.check_output()

C
chengduoZH 已提交
90 91 92
    def test_check_grad(self):
        self.check_grad(
            set(['X', 'PaddingData']), 'Out', max_relative_error=0.05)
C
chengduoZH 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

        # def test_check_grad_no_filter(self):
        #     self.check_grad(
        #         ['X'],
        #         'Out',
        #         max_relative_error=0.05,
        #         no_grad_set=set(['PaddingData']))
        #
        # def test_check_grad_no_input(self):
        #     self.check_grad(
        #         ['PaddingData'],
        #         'Out',
        #         max_relative_error=0.05,
        #         no_grad_set=set(['X']))


class TestSeqProjectCases(TestSeqProject):
    def init_test_case(self):
        self.op_type = "sequence_project"
        self.input_row = 25
        self.context_start = 2
        self.context_length = 3
        self.padding_trainable = True
        self.context_stride = 1

        self.input_size = [self.input_row, 23]
        idx = range(self.input_size[0])
        del idx[0]
        self.lod = [[0] + np.sort(random.sample(idx, 8)).tolist() +
                    [self.input_size[0]]]
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


'''
class TestSeqProjectCases(TestSeqProject):
    def setUp(self):
        self.init_test_case()
        self.op_type = 'sequence_project'

        num = 0
        for context_start in [-5, -3, -1, 0, 3]:
            for context_length in [1, 2, 5, 7]:
                for batch_size in [1, 2, 5, 7]:
                    for padding_trainable in [False, True]:

                        if context_length == 1 and context_start == 0 and padding_trainable:
                            continue

                        self.context_start = context_start
                        self.context_length = context_length
                        self.padding_trainable = padding_trainable
                        self.input_size = [batch_size, 23]
                        x = np.random.uniform(0.1, 1,
                                              self.input_size).astype('float32')
                        self.lod = [[0, self.input_size[0]]]
                        if self.input_size[0] > 2:
                            idx = range(self.input_size[0])
                            del idx[0]
                            self.lod = [
                                [0] + np.sort(random.sample(idx, 2)).tolist() +
                                [self.input_size[0]]
                            ]

                        self.begin_pad = np.max([0, -self.context_start])
                        self.end_pad = np.max(
                            [0, self.context_start + self.context_length - 1])
                        self.total_pad = self.begin_pad + self.end_pad
                        # w =  np.ones((self.total_pad, self.input_size[1])) * 100
                        w = np.array(range(self.total_pad * self.input_size[1]))
                        w.shape = self.total_pad, self.input_size[1]
                        if self.total_pad * self.input_size[1] == 0:
                            w = np.random.uniform(
                                0.1, 1,
                                (1, self.input_size[1])).astype('float32')
                            self.total_pad = 1

                        self.inputs = {
                            'X': (x, self.lod),
                            'PaddingData': (w, [[0, self.total_pad]])
                        }
                        self.attrs = {
                            'context_start': self.context_start,
                            'context_length': self.context_length,
                            'padding_trainable': self.padding_trainable,
                            'context_stride': self.context_stride
                        }
                        out = np.zeros((self.input_size[0], self.input_size[1] *
                                        self.context_length)).astype('float32')
                        self.outputs = {'Out': out}
                        print num
                        print self.attrs
                        print batch_size
                        print padding_trainable
                        print "$$$$$$$$$$$$$"

                        self.compute()
                        self.test_check_output()
C
chengduoZH 已提交
189

190 191
                        num += 1
'''
C
chengduoZH 已提交
192 193 194

if __name__ == '__main__':
    unittest.main()