pten_utils.cc 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <sstream>

17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20
#include "paddle/fluid/framework/pten_utils.h"

#include "paddle/fluid/framework/lod_tensor.h"
Z
Zeng Jinle 已提交
21
#include "paddle/fluid/framework/op_info.h"
22
#include "paddle/fluid/framework/selected_rows_utils.h"
23 24
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/string/string_helper.h"
25 26 27
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/compat/op_utils.h"
#include "paddle/phi/core/kernel_factory.h"
28 29 30 31

namespace paddle {
namespace framework {

Z
Zeng Jinle 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class KernelArgsNameMakerByOpProto : public KernelArgsNameMaker {
 public:
  explicit KernelArgsNameMakerByOpProto(
      const framework::proto::OpProto* op_proto)
      : op_proto_(op_proto) {
    PADDLE_ENFORCE_NOT_NULL(op_proto_, platform::errors::InvalidArgument(
                                           "Op proto cannot be nullptr."));
  }

  ~KernelArgsNameMakerByOpProto() {}

  const paddle::SmallVector<std::string>& GetInputArgsNames() override;
  const paddle::SmallVector<std::string>& GetOutputArgsNames() override;
  const paddle::SmallVector<std::string>& GetAttrsArgsNames() override;

  KernelSignature GetKernelSignature();

 private:
  DISABLE_COPY_AND_ASSIGN(KernelArgsNameMakerByOpProto);

 private:
  const framework::proto::OpProto* op_proto_;

  paddle::SmallVector<std::string> input_names_;
  paddle::SmallVector<std::string> output_names_;
  paddle::SmallVector<std::string> attr_names_;
};

60
OpKernelType TransPtenKernelKeyToOpKernelType(
61
    const phi::KernelKey& kernel_key) {
62
  proto::VarType::Type data_type =
63
      paddle::framework::TransToProtoVarType(kernel_key.dtype());
64
  // no need to set current device id here
65
  platform::Place place = phi::TransToPtenPlace(kernel_key.backend(), false);
66
  DataLayout data_layout = kernel_key.layout();
67
  LibraryType library_type = LibraryType::kPlain;
68
  if (kernel_key.backend() == phi::Backend::MKLDNN) {
69
    library_type = LibraryType::kMKLDNN;
70
  } else if (kernel_key.backend() == phi::Backend::CUDNN) {
71 72 73 74 75 76 77 78
    library_type = LibraryType::kCUDNN;
  } else {
    // do nothing
  }
  // TODO(chenweihang): the customized_type_value is lost
  return OpKernelType(data_type, place, data_layout, library_type);
}

79
phi::KernelKey TransOpKernelTypeToPtenKernelKey(
80
    const OpKernelType& kernel_type) {
81
  phi::Backend backend = phi::TransToPtenBackend(kernel_type.place_);
82
  if (kernel_type.library_type_ == LibraryType::kMKLDNN) {
83
    backend = phi::Backend::MKLDNN;
84
  } else if (kernel_type.library_type_ == LibraryType::kCUDNN) {
85
    backend = phi::Backend::CUDNN;
86 87 88
  } else {
    // do
  }
89
  paddle::experimental::DataLayout layout = kernel_type.data_layout_;
90
  paddle::experimental::DataType dtype =
91
      paddle::framework::TransToPtenDataType(kernel_type.data_type_);
92
  return phi::KernelKey(backend, layout, dtype);
93 94
}

95 96 97
phi::KernelKey FallBackToCpu(const OpKernelType& expected_kernel_key,
                             const phi::KernelKey& kernel_key,
                             const framework::OperatorBase& op) {
98 99 100 101 102 103
#ifdef PADDLE_WITH_XPU
  if (platform::is_xpu_place(expected_kernel_key.place_) ||
      paddle::platform::is_in_xpu_black_list(op.Type())) {
    VLOG(3) << "pten missing XPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
104 105
    return phi::KernelKey(phi::Backend::CPU, kernel_key.layout(),
                          kernel_key.dtype());
106 107 108 109 110 111 112
  }
#endif
#ifdef PADDLE_WITH_ASCEND_CL
  if (platform::is_npu_place(expected_kernel_key.place_)) {
    VLOG(3) << "pten missing NPU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
113 114
    return phi::KernelKey(phi::Backend::CPU, kernel_key.layout(),
                          kernel_key.dtype());
115 116 117 118 119 120 121
  }
#endif
#ifdef PADDLE_WITH_MLU
  if (platform::is_mlu_place(expected_kernel_key.place_)) {
    VLOG(3) << "pten missing MLU kernel: " << op.Type()
            << ", expected_kernel_key:" << expected_kernel_key
            << ", fallbacking to CPU one!";
122 123
    return phi::KernelKey(phi::Backend::CPU, kernel_key.layout(),
                          kernel_key.dtype());
124 125
  }
#endif
126
  return phi::KernelKey();
127 128
}

129 130 131 132 133 134
const paddle::SmallVector<std::string>&
KernelArgsNameMakerByOpProto::GetInputArgsNames() {
  for (int i = 0; i < op_proto_->inputs_size(); ++i) {
    auto& in = op_proto_->inputs()[i];
    auto& in_name = in.name();
    if ((in.has_extra() && in.extra()) || (in.has_quant() && in.quant())) {
135
      VLOG(6) << "Parse PtenKernel input: skip extra & quant input - "
136 137 138 139 140 141
              << in_name;
      continue;
    }
    // If contains dispensable input, we should override the
    // GetExpectedPtenKernelArgs method self
    if (in.has_dispensable() && in.dispensable()) {
142
      VLOG(6) << "Parse PtenKernel input: skip dispensable input - " << in_name;
143 144
      continue;
    }
145
    VLOG(6) << "Parse PtenKernel input: " << in_name;
146 147 148 149 150 151 152 153 154 155 156
    input_names_.emplace_back(in_name);
  }
  return input_names_;
}

const paddle::SmallVector<std::string>&
KernelArgsNameMakerByOpProto::GetOutputArgsNames() {
  for (int i = 0; i < op_proto_->outputs_size(); ++i) {
    auto& out = op_proto_->outputs()[i];
    auto& out_name = out.name();
    // TODO(chenweihang): outputs also need skip some cases
157
    VLOG(6) << "Parse PtenKernel output: " << out_name;
158 159 160 161 162 163 164 165 166 167 168 169 170
    output_names_.emplace_back(out_name);
  }
  return output_names_;
}

const paddle::SmallVector<std::string>&
KernelArgsNameMakerByOpProto::GetAttrsArgsNames() {
  for (int i = 0; i < op_proto_->attrs_size(); ++i) {
    auto& attr = op_proto_->attrs()[i];
    auto& attr_name = attr.name();
    if (attr_name == "use_mkldnn" || attr_name == "op_role" ||
        attr_name == "op_role_var" || attr_name == "op_namescope" ||
        attr_name == "op_callstack" || attr_name == "op_device") {
171
      VLOG(6) << "Parse PtenKernel attribute: skip needless attr - "
172 173 174 175 176
              << attr_name;
      continue;
    }
    if ((attr.has_extra() && attr.extra()) ||
        (attr.has_quant() && attr.quant())) {
177
      VLOG(6) << "Parse PtenKernel attribute: skip extra & quant attr - "
178 179 180
              << attr_name;
      continue;
    }
181
    VLOG(6) << "Parse PtenKernel attribute: " << attr_name;
182 183 184 185 186 187 188
    attr_names_.emplace_back(attr_name);
  }

  return attr_names_;
}

KernelSignature KernelArgsNameMakerByOpProto::GetKernelSignature() {
189
  return KernelSignature(phi::TransToPtenKernelName(op_proto_->type()),
190 191
                         GetInputArgsNames(), GetAttrsArgsNames(),
                         GetOutputArgsNames());
192 193
}

194 195 196 197 198 199 200
std::once_flag kernel_sig_map_init_flag;

void InitDefaultKernelSignatureMap() {
  std::call_once(kernel_sig_map_init_flag, [] {
    for (const auto& pair : paddle::framework::OpInfoMap::Instance().map()) {
      const auto& op_type = pair.first;
      const auto* op_proto = pair.second.proto_;
201
      if (phi::KernelFactory::Instance().HasCompatiblePtenKernel(op_type) &&
202 203 204
          op_proto) {
        paddle::framework::KernelArgsNameMakerByOpProto maker(op_proto);
        VLOG(10) << "Register kernel signature for " << op_type;
205
        phi::DefaultKernelSignatureMap::Instance().Insert(
206 207 208 209 210 211
            op_type, std::move(maker.GetKernelSignature()));
      }
    }
  });
}

212
static void SetAllocationForUninitializedDenseTensor(
213
    phi::DenseTensor* dense_tensor, const platform::Place& place) {
214 215 216 217 218 219 220 221 222
  int dtype_size = dense_tensor->dtype() == DataType::UNDEFINED
                       ? 0
                       : experimental::SizeOf(dense_tensor->dtype());
  int64_t numels = product(dense_tensor->dims());
  numels = numels < 0 ? 0 : numels;
  auto tmp_allocation_ptr = memory::Alloc(place, numels * dtype_size);
  auto& deleter = tmp_allocation_ptr.get_deleter();
  auto* allocation_ptr = tmp_allocation_ptr.release();
  auto shared_allocation =
223
      std::shared_ptr<phi::Allocation>(allocation_ptr, deleter);
224 225 226 227

  dense_tensor->ResetHolder(shared_allocation);
}

228
void SetAllocationForOutputTenosr(phi::TensorBase* tensor,
229
                                  const platform::Place& place) {
230 231
  if (phi::DenseTensor::classof(tensor)) {
    auto* dense_tensor = static_cast<phi::DenseTensor*>(tensor);
232 233 234
    if (!dense_tensor->IsInitialized() || !(dense_tensor->place() == place)) {
      SetAllocationForUninitializedDenseTensor(dense_tensor, place);
    }
235 236
  } else if (phi::SelectedRows::classof(tensor)) {
    auto* selected_rows = static_cast<phi::SelectedRows*>(tensor);
237 238 239 240 241 242 243 244 245
    if (!selected_rows->value().IsInitialized() ||
        !(selected_rows->place() == place)) {
      SetAllocationForUninitializedDenseTensor(selected_rows->mutable_value(),
                                               place);
    }
  } else {
    PADDLE_THROW(platform::errors::Unimplemented(
        "Unsupported tensor type is received when setting allocation for "
        "output tensor."));
246 247 248
  }
}

249 250
}  // namespace framework
}  // namespace paddle