ftrl_op.h 3.6 KB
Newer Older
K
kavyasrinet 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

Q
QI JUN 已提交
27
template <typename DeviceContext, typename T>
K
kavyasrinet 已提交
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
class FTRLOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* param_out = ctx.Output<Tensor>("ParamOut");
    auto* sq_accum_out = ctx.Output<Tensor>("SquaredAccumOut");
    auto* lin_accum_out = ctx.Output<Tensor>("LinearAccumOut");

    param_out->mutable_data<T>(ctx.GetPlace());
    sq_accum_out->mutable_data<T>(ctx.GetPlace());
    lin_accum_out->mutable_data<T>(ctx.GetPlace());

    auto grad = ctx.Input<Tensor>("Grad");

    auto l1 = static_cast<T>(ctx.Attr<float>("l1"));
    auto l2 = static_cast<T>(ctx.Attr<float>("l2"));
    auto lr_power = static_cast<T>(ctx.Attr<float>("lr_power"));

    auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Param"));
    auto sq_accum =
        EigenVector<T>::Flatten(*ctx.Input<Tensor>("SquaredAccumulator"));
    auto lin_accum =
        EigenVector<T>::Flatten(*ctx.Input<Tensor>("LinearAccumulator"));
    auto g = EigenVector<T>::Flatten(*grad);
    auto lr = EigenVector<T>::Flatten(*ctx.Input<Tensor>("LearningRate"));

    auto p_out = EigenVector<T>::Flatten(*param_out);
    auto s_acc_out = EigenVector<T>::Flatten(*sq_accum_out);
    auto l_acc_out = EigenVector<T>::Flatten(*lin_accum_out);
Q
QI JUN 已提交
56
    auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
K
kavyasrinet 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96

    Eigen::DSizes<int, 1> grad_dsize(grad->numel());

    auto new_accum = sq_accum + g * g;
    // Special case for lr_power = -0.5
    if (lr_power == static_cast<T>(-0.5)) {
      l_acc_out.device(place) =
          lin_accum + g -
          ((new_accum.sqrt() - sq_accum.sqrt()) / lr.broadcast(grad_dsize)) * p;
    } else {
      l_acc_out.device(place) =
          lin_accum + g -
          ((new_accum.pow(-lr_power) - sq_accum.pow(-lr_power)) /
           lr.broadcast(grad_dsize)) *
              p;
    }

    auto x = (l_acc_out.constant(l1) * l_acc_out.sign() - l_acc_out);
    if (lr_power == static_cast<T>(-0.5)) {
      auto y = (new_accum.sqrt() / lr.broadcast(grad_dsize)) +
               l_acc_out.constant(static_cast<T>(2) * l2);
      auto pre_shrink = x / y;
      p_out.device(place) =
          (l_acc_out.abs() > l_acc_out.constant(l1))
              .select(pre_shrink, p.constant(static_cast<T>(0)));
    } else {
      auto y = (new_accum.pow(-lr_power) / lr.broadcast(grad_dsize)) +
               l_acc_out.constant(static_cast<T>(2) * l2);
      auto pre_shrink = x / y;
      p_out.device(place) =
          (l_acc_out.abs() > l_acc_out.constant(l1))
              .select(pre_shrink, p.constant(static_cast<T>(0)));
    }

    s_acc_out.device(place) = sq_accum + g * g;
  }
};

}  // namespace operators
}  // namespace paddle