fused_bn_activation_op.cu 16.4 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <algorithm>
#include <cfloat>
#include <string>
#include <vector>
#include "cub/cub.cuh"
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/fused/fused_bn_activation_op.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/norm_utils.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/float16.h"

DECLARE_bool(cudnn_batchnorm_spatial_persistent);

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;
template <typename T>
using BatchNormParamType = typename CudnnDataType<T>::BatchNormParamType;

template <typename T>
class FusedBatchNormActKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("It must use CUDAPlace."));
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    float momentum = ctx.Attr<float>("momentum");
    std::string act_type = ctx.Attr<std::string>("act_type");

    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);

    // Get the size for each dimension.
    // NHWC [batch_size, in_height, in_width, in_channels]
    const auto *x = ctx.Input<Tensor>("X");
    const auto &x_dims = x->dims();
    PADDLE_ENFORCE_EQ(x_dims.size() >= 2 && x_dims.size() <= 5, true,
                      platform::errors::PreconditionNotMet(
                          "The Input dim size should be between 2 and 5"));

    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");

    // Run training mode.
    // obtain running mean and running inv var, and see if we need to
    // initialize them.
    auto *mean_out = ctx.Output<Tensor>("MeanOut");
    auto *variance_out = ctx.Output<Tensor>("VarianceOut");
    mean_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    variance_out->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

    auto *saved_mean = ctx.Output<Tensor>("SavedMean");
    auto *saved_variance = ctx.Output<Tensor>("SavedVariance");
    saved_mean->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    saved_variance->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());

    auto *y = ctx.Output<Tensor>("Y");
    y->mutable_data<T>(ctx.GetPlace());

    int N, C, H, W, D;
    const DataLayout data_layout = DataLayout::kNHWC;
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if ((N * H * W * D) == 1) {
      // Only 1 element in normalization dimension,
      // skip the batch norm calculation, let y = act(x).
      auto x_v = framework::EigenVector<T>::Flatten(*x);
      auto y_v = framework::EigenVector<T>::Flatten(*y);
      auto &dev = *dev_ctx.eigen_device();
      if (act_type == "relu") {
96
        ReluCUDAFunctor<T>()(dev, x_v, y_v);
Z
Zhen Wang 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110
      } else {
        PADDLE_THROW(
            platform::errors::Unimplemented("Unsupported activation type"));
      }
      return;
    }

    // ------------------- cudnn descriptors ---------------------
    auto handle = dev_ctx.cudnn_handle();
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;

    PADDLE_ENFORCE_CUDA_SUCCESS(
111
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
Z
Zhen Wang 已提交
112
    PADDLE_ENFORCE_CUDA_SUCCESS(
113
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
Z
Zhen Wang 已提交
114 115 116 117 118

    VLOG(3) << "Setting descriptors.";
    std::vector<int> dims = {N, C, H, W, D};
    std::vector<int> strides = {H * W * D * C, 1, W * D * C, D * C, C};

119 120 121
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
Z
Zhen Wang 已提交
122 123 124

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDeriveBNTensorDescriptor(bn_param_desc_,
125
                                                         data_desc_, mode_));
Z
Zhen Wang 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

    double this_factor = 1. - momentum;
    cudnnBatchNormOps_t bnOps_ = CUDNN_BATCHNORM_OPS_BN_ACTIVATION;
    platform::ScopedActivationDescriptor scope_act_desc;
    cudnnActivationDescriptor_t activation_desc_ =
        scope_act_desc.descriptor<T>(act_type);
    size_t workspace_size = 0;
    size_t reserve_space_size = 0;
    void *reserve_space_ptr = nullptr;
    void *workspace_ptr = nullptr;
    Tensor workspace_tensor;
    // Create reserve space and workspace for batch norm.
    // Create tensor for each batchnorm op, it will be used in the
    // backward. Thus this tensor shouldn't be temp.
    auto *reserve_space = ctx.Output<Tensor>("ReserveSpace");
    PADDLE_ENFORCE_NOT_NULL(
        reserve_space,
        platform::errors::NotFound(
            "The argument ReserveSpace of batch_norm op is not found."));

    // --------------- cudnn batchnorm workspace ---------------
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::
            cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize(
                /*handle=*/handle,
                /*mode=*/mode_,
                /*bnOps=*/bnOps_,
                /*xDesc=*/data_desc_,
                /*zDesc=*/nullptr,
                /*yDesc=*/data_desc_,
                /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
                /*activationDesc=*/activation_desc_,
158
                /*sizeInBytes=*/&workspace_size));
Z
Zhen Wang 已提交
159 160 161 162 163 164 165 166 167

    // -------------- cudnn batchnorm reserve space --------------
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetBatchNormalizationTrainingExReserveSpaceSize(
            /*handle=*/handle,
            /*mode=*/mode_,
            /*bnOps=*/bnOps_,
            /*activationDesc=*/activation_desc_,
            /*xDesc=*/data_desc_,
168
            /*sizeInBytes=*/&reserve_space_size));
Z
Zhen Wang 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    reserve_space_ptr = reserve_space->mutable_data(ctx.GetPlace(), x->type(),
                                                    reserve_space_size);
    workspace_ptr = workspace_tensor.mutable_data(ctx.GetPlace(), x->type(),
                                                  workspace_size);
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnBatchNormalizationForwardTrainingEx(
            handle, mode_, bnOps_, CudnnDataType<T>::kOne(),
            CudnnDataType<T>::kZero(), data_desc_, x->template data<T>(),
            nullptr, nullptr, data_desc_, y->template data<T>(), bn_param_desc_,
            scale->template data<BatchNormParamType<T>>(),
            bias->template data<BatchNormParamType<T>>(), this_factor,
            mean_out->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            variance_out->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            epsilon, saved_mean->template mutable_data<BatchNormParamType<T>>(
                         ctx.GetPlace()),
            saved_variance->template mutable_data<BatchNormParamType<T>>(
                ctx.GetPlace()),
            activation_desc_, workspace_ptr, workspace_size, reserve_space_ptr,
190
            reserve_space_size));
Z
Zhen Wang 已提交
191 192 193

    // clean when exit.
    PADDLE_ENFORCE_CUDA_SUCCESS(
194
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
Z
Zhen Wang 已提交
195
    PADDLE_ENFORCE_CUDA_SUCCESS(
196
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
Z
Zhen Wang 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
  }
};

template <typename T>
class FusedBatchNormActGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    PADDLE_ENFORCE_EQ(
        platform::is_gpu_place(ctx.GetPlace()), true,
        platform::errors::PreconditionNotMet("It must use CUDAPlace."));
    double epsilon = static_cast<double>(ctx.Attr<float>("epsilon"));
    std::string act_type = ctx.Attr<std::string>("act_type");

    const auto *x = ctx.Input<Tensor>("X");
    const auto *y = ctx.Input<Tensor>("Y");
    const auto *d_y = ctx.Input<Tensor>(framework::GradVarName("Y"));
    const auto *scale = ctx.Input<Tensor>("Scale");
    const auto *bias = ctx.Input<Tensor>("Bias");
    const auto *reserve_space = ctx.Input<Tensor>("ReserveSpace");

    const auto &x_dims = x->dims();

    PADDLE_ENFORCE_EQ(x_dims.size() >= 2 && x_dims.size() <= 5, true,
                      platform::errors::PreconditionNotMet(
                          "The Input dim size should be between 2 and 5"));
    int N, C, H, W, D;
    const DataLayout data_layout = DataLayout::kNHWC;
    ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D);

    // init output
    auto *d_x = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto *d_scale = ctx.Output<Tensor>(framework::GradVarName("Scale"));
    auto *d_bias = ctx.Output<Tensor>(framework::GradVarName("Bias"));

    d_x->mutable_data<T>(ctx.GetPlace());
    PADDLE_ENFORCE_EQ(
        d_scale && d_bias, true,
        platform::errors::PreconditionNotMet(
            "Both the scale grad and the bias grad must not be null."));
    d_scale->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    d_bias->mutable_data<BatchNormParamType<T>>(ctx.GetPlace());
    PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL,
                      platform::errors::PreconditionNotMet(
                          "The scale only has one dimension."));
    PADDLE_ENFORCE_EQ(
        scale->dims()[0], C,
        platform::errors::PreconditionNotMet(
            "The size of scale is equal to the channel of Input(X)."));

    auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    if ((N * H * W * D) == 1) {
      if (act_type == "relu") {
        auto x_v = framework::EigenVector<T>::Flatten(*x);
        auto y_v = framework::EigenVector<T>::Flatten(*y);
        auto dx_v = framework::EigenVector<T>::Flatten(*d_x);
        auto dy_v = framework::EigenVector<T>::Flatten(*d_y);
        auto &dev = *dev_ctx.eigen_device();
        ReluGradFunctor<T>()(dev, x_v, y_v, dy_v, dx_v);
      } else {
        PADDLE_THROW(
            platform::errors::Unimplemented("Unsupported activation type"));
      }
      math::SetConstant<platform::CUDADeviceContext, BatchNormParamType<T>>
          functor;
      functor(dev_ctx, d_scale, static_cast<BatchNormParamType<T>>(0));
      functor(dev_ctx, d_bias, static_cast<BatchNormParamType<T>>(0));
      return;
    }

    std::vector<int> dims = {N, C, H, W, D};
    std::vector<int> strides = {H * W * C * D, 1, W * D * C, D * C, C};
    // ------------------- cudnn descriptors ---------------------
    cudnnTensorDescriptor_t data_desc_;
    cudnnTensorDescriptor_t bn_param_desc_;
    cudnnBatchNormMode_t mode_ = CUDNN_BATCHNORM_SPATIAL_PERSISTENT;

    PADDLE_ENFORCE_CUDA_SUCCESS(
275
        platform::dynload::cudnnCreateTensorDescriptor(&data_desc_));
Z
Zhen Wang 已提交
276
    PADDLE_ENFORCE_CUDA_SUCCESS(
277
        platform::dynload::cudnnCreateTensorDescriptor(&bn_param_desc_));
Z
Zhen Wang 已提交
278 279 280 281 282 283 284
    if (epsilon <= CUDNN_BN_MIN_EPSILON - FLT_EPSILON) {
      LOG(ERROR) << "Provided epsilon is smaller than "
                 << "CUDNN_BN_MIN_EPSILON. Setting it to "
                 << "CUDNN_BN_MIN_EPSILON instead.";
    }
    epsilon = std::max(epsilon, CUDNN_BN_MIN_EPSILON);

285 286 287
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
        data_desc_, CudnnDataType<T>::type,
        x_dims.size() > 3 ? x_dims.size() : 4, dims.data(), strides.data()));
Z
Zhen Wang 已提交
288 289
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDeriveBNTensorDescriptor(bn_param_desc_,
290
                                                         data_desc_, mode_));
Z
Zhen Wang 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

    const auto *saved_mean = ctx.Input<Tensor>("SavedMean");
    const auto *saved_var = ctx.Input<Tensor>("SavedVariance");
    const auto *saved_mean_data =
        saved_mean->template data<BatchNormParamType<T>>();
    const auto *saved_var_data =
        saved_var->template data<BatchNormParamType<T>>();

    size_t workspace_size = 0;
    void *workspace_ptr = nullptr;
    Tensor workspace_tensor;
    auto reserve_space_size = reserve_space->memory_size();
    cudnnBatchNormOps_t bnOps_ = CUDNN_BATCHNORM_OPS_BN_ACTIVATION;
    platform::ScopedActivationDescriptor scope_act_desc;
    cudnnActivationDescriptor_t activation_desc_ =
        scope_act_desc.descriptor<T>(act_type);
    // --------------- cudnn batchnorm workspace ---------------
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetBatchNormalizationBackwardExWorkspaceSize(
            /*handle=*/dev_ctx.cudnn_handle(),
            /*mode=*/mode_,
            /*bnOps=*/bnOps_,
            /*xDesc=*/data_desc_,
            /*yDesc=*/data_desc_,
            /*dyDesc=*/data_desc_,
            /*dzDesc=*/nullptr,
            /*dxDesc=*/data_desc_,
            /*bnScaleBiasMeanVarDesc=*/bn_param_desc_,
            /*activationDesc=*/activation_desc_,
320
            /*sizeInBytes=*/&workspace_size));
Z
Zhen Wang 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357

    workspace_ptr = workspace_tensor.mutable_data(ctx.GetPlace(), x->type(),
                                                  workspace_size);

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnBatchNormalizationBackwardEx(
            /*handle=*/dev_ctx.cudnn_handle(),
            /*mode=*/mode_,
            /*bnOps=*/bnOps_,
            /*alphaDataDiff=*/CudnnDataType<T>::kOne(),
            /*betaDataDiff=*/CudnnDataType<T>::kZero(),
            /*alphaParamDiff=*/CudnnDataType<T>::kOne(),
            /*betaParamDiff=*/CudnnDataType<T>::kZero(),
            /*xDesc=*/data_desc_,
            /*xData=*/x->template data<T>(),
            /*yDesc=*/data_desc_,
            /*yData=*/y->template data<T>(),
            /*dyDesc=*/data_desc_,
            /*dyData=*/d_y->template data<T>(),
            /*dzDesc=*/nullptr,
            /*dzData=*/nullptr,
            /*dxDesc=*/data_desc_,
            /*dxData=*/d_x->template mutable_data<T>(ctx.GetPlace()),
            /*dBnScaleBiasDesc=*/bn_param_desc_,
            /*bnScaleData=*/scale->template data<BatchNormParamType<T>>(),
            /*bnBiasData=*/bias->template data<BatchNormParamType<T>>(),
            /*dBnScaleData=*/d_scale
                ->template mutable_data<BatchNormParamType<T>>(ctx.GetPlace()),
            /*dBnBiasData=*/d_bias
                ->template mutable_data<BatchNormParamType<T>>(ctx.GetPlace()),
            /*epsilon=*/epsilon,
            /*savedMean=*/saved_mean_data,
            /*savedInvVariance=*/saved_var_data,
            /*activationDesc=*/activation_desc_,
            /*workspace=*/workspace_ptr,
            /*workSpaceSizeInBytes=*/workspace_size,
            /*reserveSpace=*/const_cast<T *>(reserve_space->template data<T>()),
358
            /*reserveSpaceSizeInBytes=*/reserve_space_size));
Z
Zhen Wang 已提交
359 360 361

    // clean when exit.
    PADDLE_ENFORCE_CUDA_SUCCESS(
362
        platform::dynload::cudnnDestroyTensorDescriptor(data_desc_));
Z
Zhen Wang 已提交
363
    PADDLE_ENFORCE_CUDA_SUCCESS(
364
        platform::dynload::cudnnDestroyTensorDescriptor(bn_param_desc_));
Z
Zhen Wang 已提交
365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
  }
};

}  // namespace operators
}  // namespace paddle

#if CUDNN_VERSION >= 7401
namespace ops = paddle::operators;
namespace plat = paddle::platform;
REGISTER_OP_CUDA_KERNEL(
    fused_batch_norm_act,
    ops::FusedBatchNormActKernel<plat::CUDADeviceContext, float>,
    ops::FusedBatchNormActKernel<plat::CUDADeviceContext, double>,
    ops::FusedBatchNormActKernel<plat::CUDADeviceContext, plat::float16>);
REGISTER_OP_CUDA_KERNEL(
    fused_batch_norm_act_grad,
    ops::FusedBatchNormActGradKernel<plat::CUDADeviceContext, float>,
    ops::FusedBatchNormActGradKernel<plat::CUDADeviceContext, double>,
    ops::FusedBatchNormActGradKernel<plat::CUDADeviceContext, plat::float16>);
#endif