cudnn_lstm_cache.h 7.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/cudnn_helper.h"
#include "paddle/fluid/platform/dynload/cudnn.h"

namespace paddle {
namespace operators {

class ScopedRNNBase {
 public:
  ScopedRNNBase(int seq_length, int batch_size, int input_size, int hidden_size,
                int num_layers, float dropout_prob, int seed, int weight_numel,
                bool initialized, bool is_bidirec)
      : seq_length_(seq_length),
        batch_size_(batch_size),
        input_size_(input_size),
        hidden_size_(hidden_size),
        num_layers_(num_layers),
        dropout_prob_(dropout_prob),
        seed_(seed),
        weight_numel_(weight_numel),
        initialized_(initialized),
        is_bidirec_(is_bidirec) {}

  template <typename T>
  void Create(const cudnnHandle_t& handle, const platform::Place& place,
              const std::vector<int>& sequence_length, size_t* workspace_size,
              size_t* reserve_size, framework::Tensor* dropout_state) {
    int numDirections = is_bidirec_ ? 2 : 1;
    cudnnDataType_t cudnn_type = platform::CudnnDataType<T>::type;

    // ------------------- cudnn x, y descriptors ---------------------
    std::vector<int> dims_x = {batch_size_, input_size_, 1};
    std::vector<int> strides_x = {input_size_, 1, 1};
    std::vector<int> dims_y = {batch_size_, hidden_size_ * numDirections, 1};
    std::vector<int> strides_y = {hidden_size_ * numDirections, 1, 1};
    for (int i = 0; i < seq_length_; ++i) {
      x_descs_.emplace_back(x_desc_.descriptor<T>(dims_x, strides_x));
      y_descs_.emplace_back(y_desc_.descriptor<T>(dims_y, strides_y));
    }
    if (!sequence_length.empty()) {
      x_seq_desc_.descriptor<T>(seq_length_, batch_size_, input_size_, true,
                                sequence_length);
      y_seq_desc_.descriptor<T>(seq_length_, batch_size_,
                                hidden_size_ * numDirections, true,
                                sequence_length);
    }

    // ------------------- cudnn hx, hy, cx, cy descriptors----------
    std::vector<int> dims_hx = {num_layers_ * numDirections, batch_size_,
                                hidden_size_};
    std::vector<int> strides_hx = {hidden_size_ * batch_size_, hidden_size_, 1};
    init_h_desc_.descriptor<T>(dims_hx, strides_hx);
    init_c_desc_.descriptor<T>(dims_hx, strides_hx);
    last_h_desc_.descriptor<T>(dims_hx, strides_hx);
    last_c_desc_.descriptor<T>(dims_hx, strides_hx);

    // ------------------- cudnn dropout descriptors ---------------------
    size_t state_size;
    if (!initialized_) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnDropoutGetStatesSize(handle, &state_size));
      dropout_state->mutable_data<uint8_t>({static_cast<int64_t>(state_size)},
                                           place);
    }
    dropout_desc_.descriptor(handle, place, initialized_, dropout_prob_,
                             dropout_state, seed_, state_size);

// ------------------- cudnn rnn descriptors ---------------------
#if CUDNN_VERSION >= 6000
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor_v6(
        handle, rnn_desc_.desc(), hidden_size_, num_layers_,
        dropout_desc_.desc(), CUDNN_LINEAR_INPUT,
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
        CUDNN_RNN_ALGO_STANDARD, cudnn_type));
#else
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor(
        rnn_desc_.desc(), hidden_size_, num_layers_, dropout_desc_.desc(),
        CUDNN_LINEAR_INPUT,
        is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
        cudnn_type));
#endif
    if (!sequence_length.empty()) {
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNPaddingMode(
          rnn_desc_.desc(), CUDNN_RNN_PADDED_IO_ENABLED));
    }

    // ------------------- cudnn weights_size ---------------------
    size_t weights_size_;
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNParamsSize(
        handle, rnn_desc_.desc(), x_descs_[0], &weights_size_, cudnn_type));
    PADDLE_ENFORCE_EQ(
        weights_size_, sizeof(T) * weight_numel_,
        platform::errors::InvalidArgument(
            "The cudnn lstm and setting weight size should be same."));
    // ------------------- cudnn weight descriptors ---------------------
    platform::DataLayout layout = platform::DataLayout::kNCHW;
    int dim_tmp = weights_size_ / sizeof(T);
    std::vector<int> dim_w = {dim_tmp, 1, 1};
    weight_desc_.descriptor<T>(layout, dim_w);
    // ------------------- cudnn workspace, reserve size ---------------------
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNWorkspaceSize(
        handle, rnn_desc_.desc(), seq_length_, x_descs_.data(),
        workspace_size));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnGetRNNTrainingReserveSize(
            handle, rnn_desc_.desc(), seq_length_, x_descs_.data(),
            reserve_size));
  }
  cudnnTensorDescriptor_t* x_descs() { return x_descs_.data(); }
  cudnnTensorDescriptor_t* y_descs() { return y_descs_.data(); }
  cudnnRNNDataDescriptor_t x_seq_desc() { return x_seq_desc_.desc(); }
  cudnnRNNDataDescriptor_t y_seq_desc() { return y_seq_desc_.desc(); }
  cudnnTensorDescriptor_t init_h_desc() { return init_h_desc_.desc(); }
  cudnnTensorDescriptor_t init_c_desc() { return init_c_desc_.desc(); }
  cudnnTensorDescriptor_t last_h_desc() { return last_h_desc_.desc(); }
  cudnnTensorDescriptor_t last_c_desc() { return last_c_desc_.desc(); }
  cudnnRNNDescriptor_t rnn_desc() { return rnn_desc_.desc(); }
  cudnnDropoutDescriptor_t dropout_desc() { return dropout_desc_.desc(); }
  cudnnFilterDescriptor_t weight_desc() { return weight_desc_.desc(); }

 private:
  int seq_length_;
  int batch_size_;
  int input_size_;
  int hidden_size_;
  int num_layers_;
  float dropout_prob_;
  int seed_;
  int weight_numel_;
  bool initialized_;
  bool is_bidirec_;
  std::vector<cudnnTensorDescriptor_t> x_descs_;
  std::vector<cudnnTensorDescriptor_t> y_descs_;

  platform::ScopedTensorDescriptor x_desc_;
  platform::ScopedTensorDescriptor y_desc_;
  platform::ScopedRNNTensorDescriptor x_seq_desc_;
  platform::ScopedRNNTensorDescriptor y_seq_desc_;
  platform::ScopedTensorDescriptor init_h_desc_;
  platform::ScopedTensorDescriptor init_c_desc_;
  platform::ScopedTensorDescriptor last_h_desc_;
  platform::ScopedTensorDescriptor last_c_desc_;
  platform::ScopedDropoutDescriptor dropout_desc_;
  platform::ScopedFilterDescriptor weight_desc_;
  platform::ScopedRNNDescriptor rnn_desc_;
};

}  // namespace operators
}  // namespace paddle