amp_utils.py 19.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .... import core
from .... import framework
20
from .... import global_scope
21 22 23
from ....log_helper import get_logger
from ....wrapped_decorator import signature_safe_contextmanager
from .amp_lists import AutoMixedPrecisionListsBF16
24 25 26 27 28
from ..fp16_utils import find_true_prev_op, find_true_post_op, _rename_arg, \
    find_op_index, _rename_op_input

import collections
import struct
29 30 31
import logging
import numpy as np

32 33 34 35
__all__ = [
    "bf16_guard", "rewrite_program_bf16", "cast_model_to_bf16",
    "cast_parameters_to_bf16", "convert_float_to_uint16"
]
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')

_valid_types = [
    core.VarDesc.VarType.LOD_TENSOR, core.VarDesc.VarType.SELECTED_ROWS,
    core.VarDesc.VarType.LOD_TENSOR_ARRAY
]

_bf16_guard_pattern = "__use_bf16__"


def convert_float_to_uint16(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
        lambda x: struct.unpack('<I', struct.pack('<f', x))[0] >> 16,
        otypes=[np.uint16])(in_list.flat)
    return np.reshape(out, in_list.shape)


def _dtype_to_str(dtype):
    """
    Convert specific variable type to its corresponding string.

    Args:
        dtype (VarType): Variable type.
    """
    if dtype == core.VarDesc.VarType.BF16:
        return 'bf16'
    else:
        return 'fp32'


def _insert_cast_op(block, op, idx, src_dtype, dest_dtype):
    """
    Insert cast op and rename args of input and output.

    Args:
        block (Program): The block in which the operator is.
        op (Operator): The operator to insert cast op.
        idx (int): The index of current operator.
        src_dtype (VarType): The input variable dtype of cast op.
        dest_dtype (VarType): The output variable dtype of cast op.

    Returns:
        num_cast_op (int): The number of cast ops that have been inserted.
    """
    num_cast_ops = 0

    for in_name in op.input_names:
        if src_dtype == core.VarDesc.VarType.FP32 and op.type in [
                'batch_norm', 'fused_bn_add_activation', 'layer_norm'
        ]:
            if in_name not in {'X', 'Z'}:
                continue
        for in_var_name in op.input(in_name):
            in_var = block.var(in_var_name)
            if in_var.type not in _valid_types or in_var.dtype == dest_dtype:
                continue
            if in_var.dtype == src_dtype:
                cast_name = in_var.name + '.cast_' + _dtype_to_str(dest_dtype)
                out_var = block.vars.get(cast_name)
                if out_var is None or out_var.dtype != dest_dtype:
                    out_var = block.create_var(
                        name=cast_name,
                        dtype=dest_dtype,
                        persistable=False,
                        stop_gradient=in_var.stop_gradient)

                    block._insert_op(
                        idx,
                        type="cast",
                        inputs={"X": in_var},
                        outputs={"Out": out_var},
                        attrs={
                            "in_dtype": in_var.dtype,
                            "out_dtype": out_var.dtype
                        })
                    num_cast_ops += 1
                _rename_arg(op, in_var.name, out_var.name)
            else:
                if op.has_attr('in_dtype'):
                    op._set_attr('in_dtype', dest_dtype)
    if src_dtype == core.VarDesc.VarType.FP32 and dest_dtype == core.VarDesc.VarType.BF16:
        for out_name in op.output_names:
            if op.type in [
                    'batch_norm', 'fused_bn_add_activation', 'layer_norm'
            ] and out_name != 'Y':
                continue
            for out_var_name in op.output(out_name):
                out_var = block.var(out_var_name)
                if out_var.type not in _valid_types:
                    continue
                if out_var.dtype == core.VarDesc.VarType.FP32:
                    out_var.desc.set_dtype(core.VarDesc.VarType.BF16)
                    if op.has_attr('out_dtype'):
                        op._set_attr('out_dtype', core.VarDesc.VarType.BF16)
    return num_cast_ops


136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
def _insert_cast_post_op(block, op, idx, src_dtype, dest_dtype, target_name,
                         op_var_rename_map):
    num_cast_ops = 0
    target_var = block.var(target_name)
    if target_var.type not in _valid_types or target_var.dtype == dest_dtype:
        return num_cast_ops

    assert target_var.dtype == src_dtype, \
        "The real dtype({}) is not equal to the src dtype({})".format(_dtype_to_str(target_var.dtype), _dtype_to_str(src_dtype))

    cast_name = target_var.name + '.cast_' + _dtype_to_str(dest_dtype)
    cast_var = block.vars.get(cast_name)
    if cast_var is None or cast_var.dtype != dest_dtype:
        cast_var = block.create_var(
            name=cast_name,
            dtype=dest_dtype,
            persistable=False,
            stop_gradient=target_var.stop_gradient)
        block._insert_op(
            idx,
            type="cast",
            inputs={"X": target_var},
            outputs={"Out": cast_var},
            attrs={"in_dtype": target_var.dtype,
                   "out_dtype": cast_var.dtype})
        num_cast_ops += 1
        op_var_rename_map[block.idx][target_var.name] = cast_var.name

    return num_cast_ops


167
def _is_in_fp32_varnames(op, amp_lists):
168 169 170
    if not amp_lists.fp32_varnames:
        return False

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    for in_name in op.input_arg_names:
        if in_name in amp_lists.fp32_varnames:
            return True

    for out_name in op.output_arg_names:
        if out_name in amp_lists.fp32_varnames:
            return True

    return False


def _need_keep_fp32(op, unsupported_op_list, use_bf16_guard):
    if op.type in unsupported_op_list:
        # the highest priority condition: If ops don't have bf16 computing kernels,
        # they must be executed in fp32 calculation pattern.
        return True

    # process ops about learning rate
    in_out_arg_names = []
    in_out_arg_names.extend(list(op.input_arg_names))
    in_out_arg_names.extend(list(op.output_arg_names))
    for name in in_out_arg_names:
        if "learning_rate" in name:
            return True

    if use_bf16_guard:
        if op.has_attr("op_namescope") and \
                (_bf16_guard_pattern in op.attr("op_namescope")):
            # op in bf16 guard
            return False
        else:
            # op not in bf16 guard
            return True
    else:
        return False


@signature_safe_contextmanager
def bf16_guard():
    """
    As for the pure bf16 training, if users set `use_bf16_guard` to True,
    only those ops created in the context manager `bf16_guard` will be
    transformed as float16 type.

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle
            import paddle.nn.functional as F
            paddle.enable_static()
            data = paddle.static.data(name='X', shape=[None, 1, 28, 28], dtype='float32')
            conv2d = paddle.static.nn.conv2d(input=data, num_filters=6, filter_size=3)

            with paddle.static.amp.bf16_guard():
                bn = paddle.static.nn.batch_norm(input=conv2d, act="relu")
                pool = F.max_pool2d(bn, kernel_size=2, stride=2)
                hidden = paddle.static.nn.fc(pool, size=10)
                loss = paddle.mean(hidden)
    """
    with framework.name_scope(prefix=_bf16_guard_pattern):
        yield


235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
def cast_model_to_bf16(program, amp_lists=None, use_bf16_guard=True):
    """
    Traverse all ops in the whole model and set their inputs and outputs
    to the bf16 data type. This function will do some special processing for
    the batch normalization, which will keep the batchnorm's computations in FP32.
    Args:
        program (Program): The used program.
        amp_lists (AutoMixedPrecisionListsBF16): An AutoMixedPrecisionListsBF16 object.
        use_bf16_guard(bool): Determine whether to use `bf16_guard` when
                              constructing the program. Default True.
    """

    if amp_lists is None:
        amp_lists = AutoMixedPrecisionListsBF16()
    global_block = program.global_block()
    keep_fp32_ops = set()
    to_bf16_var_names = set()
    to_bf16_pre_cast_ops = set()
    origin_ops = []
    for block in program.blocks:
        origin_ops.extend(block.ops)

    for block in program.blocks:
        ops = block.ops
        for op in ops:
            if op.type == 'create_py_reader' or op.type == 'read':
                continue
            if _need_keep_fp32(op, amp_lists.unsupported_list, use_bf16_guard):
                keep_fp32_ops.add(op)
                continue  # processed below
            for in_name in op.input_names:
                if op.type in {
                        'batch_norm', 'fused_bn_add_activation', 'layer_norm'
                } and in_name not in {'X', 'Z'}:
                    continue
                for in_var_name in op.input(in_name):
                    in_var = None
                    try:
                        in_var = block.var(in_var_name)
                    except ValueError as e:
                        _logger.debug(
                            "-- {}, try to get it in the global block --".
                            format(e))
                        in_var = global_block.var(in_var_name)
                        if in_var is not None:
                            _logger.debug(
                                "-- var {} is got in the global block --".
                                format(in_var_name))

                    if in_var is None or in_var.type not in _valid_types:
                        continue

                    if in_var.dtype == core.VarDesc.VarType.FP32:
                        in_var.desc.set_dtype(core.VarDesc.VarType.BF16)
                        to_bf16_var_names.add(in_var_name)

                    _logger.debug(
                        "-- op type: {}, in var name: {}, in var dtype: {} --".
                        format(op.type, in_var_name, in_var.dtype))

            for out_name in op.output_names:
                if op.type in {
                        'batch_norm', 'fused_bn_add_activation', 'layer_norm'
                } and out_name != 'Y':
                    continue
                for out_var_name in op.output(out_name):
                    out_var = None
                    try:
                        out_var = block.var(out_var_name)
                    except ValueError as e:
                        _logger.debug(
                            "-- {}, try to get it in the global block --".
                            format(e))
                        out_var = global_block.var(out_var_name)
                        if out_var is not None:
                            _logger.debug(
                                "-- var {} is got in the global block --".
                                format(out_var_name))

                    if out_var is None or out_var.type not in _valid_types:
                        continue

                    if out_var.dtype == core.VarDesc.VarType.FP32:
                        out_var.desc.set_dtype(core.VarDesc.VarType.BF16)

                    _logger.debug(
                        "-- op type: {}, out var name: {}, out var dtype: {} --".
                        format(op.type, out_var_name, out_var.dtype))
            for attr_name in ['in_dtype', 'out_dtype', 'dtype']:
                if op.has_attr(attr_name) and op.attr(
                        attr_name) == core.VarDesc.VarType.FP32:
                    op._set_attr(attr_name, core.VarDesc.VarType.BF16)
            if op.has_attr('use_mkldnn'):
                op._set_attr('use_mkldnn', True)
            if op.has_attr('mkldnn_data_type'):
                op._set_attr('mkldnn_data_type', 'bfloat16')

    # process ops in keep_fp32_ops
    op_var_rename_map = [
        collections.OrderedDict() for _ in range(len(program.blocks))
    ]
    for block in program.blocks:
        ops = block.ops
        idx = 0
        while idx < len(ops):
            op = ops[idx]
            num_cast_ops = 0
            if op not in keep_fp32_ops:
                if op in to_bf16_pre_cast_ops:
                    in_var_cast_num = _insert_cast_op(block, op, idx,
                                                      core.VarDesc.VarType.FP32,
                                                      core.VarDesc.VarType.BF16)
                    num_cast_ops += in_var_cast_num
            else:
                pre_cast_num = _insert_cast_op(block, op, idx,
                                               core.VarDesc.VarType.BF16,
                                               core.VarDesc.VarType.FP32)
                num_cast_ops += pre_cast_num
                for out_var_name in op.output_arg_names:
                    out_var = block.vars.get(out_var_name)
                    if out_var is None or out_var.type not in _valid_types:
                        continue
                    if out_var.dtype == core.VarDesc.VarType.BF16:
                        out_var.desc.set_dtype(core.VarDesc.VarType.FP32)
                        post_ops = find_true_post_op(ops, op, out_var_name)
                        for post_op in post_ops:
                            if post_op in keep_fp32_ops:
                                continue
                            post_cast_num = _insert_cast_post_op(
                                block, op, idx + pre_cast_num + 1,
                                core.VarDesc.VarType.FP32,
                                core.VarDesc.VarType.BF16, out_var_name,
                                op_var_rename_map)
                            num_cast_ops += post_cast_num
            idx += num_cast_ops + 1

    _rename_op_input(program, op_var_rename_map, origin_ops, keep_fp32_ops)
    return to_bf16_var_names


def cast_parameters_to_bf16(place, program, scope=None, to_bf16_var_names=None):
    """
    Traverse all parameters in the whole model and set them to the BF16 data type.
    Whereas, this function will keep parameters of batchnorms in FP32.
    Args:
        place(fluid.CPUPlace|fluid.CUDAPlace): `place` is used to restore the BF16 weight tensors.
        program (Program): The used program.
        scope(fluid.Scope, optional): `scope` is used to get the FP32 weight tensor values.
                                      Default is None.
        to_bf16_var_names(set|list, optional): The data types of vars in `to_bf16_var_names`
                                               will be set to BF16. Usually, it is the returned
                                               value of `cast_model_to_bf16` API.
    """
    all_parameters = []
    for block in program.blocks:
        all_parameters.extend(block.all_parameters())

    bf16_var_names = to_bf16_var_names if to_bf16_var_names else set()
    var_scope = scope if scope else global_scope()
    for param in all_parameters:
        if param.name in bf16_var_names:
            _logger.debug("---- cast {} to bf16 dtype ----".format(param.name))
            param_t = var_scope.find_var(param.name).get_tensor()
            data = np.array(param_t)
            param_t.set(convert_float_to_uint16(data), place)


def rewrite_program_bf16(main_prog, amp_lists=None):
403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
    """
    Traverse all ops in current block and insert cast op according to
    which set current op belongs to.

    1. When an op belongs to the fp32 list, add it to fp32 set
    2. When an op belongs to the bf16 list, add it to bf16 set
    3. When an op belongs to the gray list. If one
       of its inputs is the output of fp32 set op or fp32 list op,
       add it to fp32 set. If all of its previous ops are not fp32
       op and one of its inputs is the output of bf16 set op or
       bf16 list op, add it to bf16 set.
    4. When an op isn't in the lists, add it to fp32 op set.
    5. Add necessary cast ops to make sure that fp32 set op will be
       computed in fp32 mode, while bf16 set op will be computed in
       bf16 mode.

    Args:
        main_prog (Program): The main program for training.
    """
    if amp_lists is None:
        amp_lists = AutoMixedPrecisionListsBF16()
    block = main_prog.global_block()
    ops = block.ops
    bf16_op_set = set()
    fp32_op_set = set()
    for op in ops:

        # NOTE(zhiqiu): 'create_py_reader' and 'read' is used in non-iterable DataLoder,
        # we don't need to handle reader op and the input of 'create_py_reader' is not
        # in block, which may result in errors.
        # See GeneratorLoader._init_non_iterable() for details.
        if op.type == 'create_py_reader' or op.type == 'read':
            continue

        if amp_lists.fp32_varnames is not None and _is_in_fp32_varnames(
                op, amp_lists):
            fp32_op_set.add(op)
            continue

442
        if op.type in amp_lists.fp32_list:
443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
            fp32_op_set.add(op)
        elif op.type in amp_lists.bf16_list:
            bf16_op_set.add(op)
        elif op.type in amp_lists.gray_list:
            is_fp32_op = False
            is_bf16_op = False
            for in_name in op.input_names:
                # if this op has inputs
                if in_name:
                    for in_var_name in op.input(in_name):
                        in_var = block.var(in_var_name)
                        # this in_var isn't the output of other op
                        if in_var.op is None:
                            continue
                        elif in_var.op is op:
                            prev_op = find_true_prev_op(ops, op, in_var_name)
                            if prev_op is None:
                                continue
                        else:
                            prev_op = in_var.op
                        # if it's one of inputs
                        if prev_op in fp32_op_set or \
                                prev_op.type in amp_lists.fp32_list:
                            is_fp32_op = True
                        elif prev_op in bf16_op_set or \
                                prev_op.type in amp_lists.bf16_list:
                            is_bf16_op = True
            if is_fp32_op:
                fp32_op_set.add(op)
            elif is_bf16_op:
                bf16_op_set.add(op)
            else:
                pass
        else:
            # For numerical safe, we apply fp32 computation on ops that
            # are not determined which list they should stay.
            fp32_op_set.add(op)

    idx = 0
    while idx < len(ops):
        op = ops[idx]
        num_cast_ops = 0
        if op in fp32_op_set:
            num_cast_ops = _insert_cast_op(block, op, idx,
                                           core.VarDesc.VarType.BF16,
                                           core.VarDesc.VarType.FP32)
        elif op in bf16_op_set:
            if op.has_attr('use_mkldnn'):
                op._set_attr('use_mkldnn', True)
                op._set_attr('mkldnn_data_type', 'bfloat16')
            elif op.has_attr('dtype') and op.attr(
                    'dtype') == core.VarDesc.VarType.FP32:
                op._set_attr('dtype', core.VarDesc.VarType.BF16)

            num_cast_ops = _insert_cast_op(block, op, idx,
                                           core.VarDesc.VarType.FP32,
                                           core.VarDesc.VarType.BF16)
        else:
            pass

        idx += num_cast_ops + 1