node.py 30.0 KB
Newer Older
D
dongdaxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
13
"""Defination of Server and Worker."""
D
dongdaxiang 已提交
14

15
from . import ps_pb2 as pslib
16 17
# NOTE: reduce removed in fuctools in python3
from functools import reduce
D
dongdaxiang 已提交
18 19 20 21


class Server(object):
    """
22 23
        A Server basic class
        it's a base class, does not have implementation
D
dongdaxiang 已提交
24 25 26 27 28 29 30 31 32
    """

    def __init__(self):
        pass


class Worker(object):
    """
        A Worker basic class.
33
        it's a base class, does not have implementation
D
dongdaxiang 已提交
34 35 36 37 38 39 40 41 42 43
    """

    def __init__(self):
        pass


class DownpourServer(Server):
    """
        DownpourServer class is used to generate server program_desc
        Args:
44
            server: it is pslib.ServerParameter()
D
dongdaxiang 已提交
45 46 47 48 49
        Examples:
            server = DownpourServer()
    """

    def __init__(self):
D
dongdaxiang 已提交
50 51 52 53 54 55
        self._server = pslib.ServerParameter()
        self._server.downpour_server_param.service_param.server_class = "DownpourBrpcPsServer"
        self._server.downpour_server_param.service_param.client_class = "DownpourBrpcPsClient"
        self._server.downpour_server_param.service_param.service_class = "DownpourPsService"
        self._server.downpour_server_param.service_param.start_server_port = 0
        self._server.downpour_server_param.service_param.server_thread_num = 12
D
dongdaxiang 已提交
56

57
    def add_sparse_table(self, table_id, strategy):
D
dongdaxiang 已提交
58 59 60
        """
        Args:
            table_id(int): id of sparse params table
61
            strategy(dict): the config dict.
D
dongdaxiang 已提交
62
        Returns:
63
            return None
D
dongdaxiang 已提交
64
        """
65

66 67 68 69 70 71
        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_SPARSE_TABLE:
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
72
                                     %(table_id, pslib.PS_SPARSE_TABLE, table.type))
73 74
        if strategy is None:
            strategy = dict()
D
dongdaxiang 已提交
75
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
76 77
        table.table_id = table_id
        table.type = pslib.PS_SPARSE_TABLE
78 79

        support_sparse_key_list = ['sparse_table_class', 'sparse_compress_in_save', 'sparse_shard_num', \
80 81 82 83 84 85 86 87 88 89 90 91
                                   'sparse_accessor_class', 'sparse_learning_rate', 'sparse_initial_g2sum', 'sparse_initial_range', \
                                   'sparse_weight_bounds', 'sparse_embedx_dim', 'sparse_embedx_threshold', 'sparse_nonclk_coeff', \
                                   'sparse_click_coeff', 'sparse_base_threshold', 'sparse_delta_threshold', 'sparse_delta_keep_days', \
                                   'sparse_delete_after_unseen_days', 'sparse_show_click_decay_rate', 'sparse_delete_threshold', \
                                   'sparse_converter', 'sparse_deconverter', 'sparse_enable_cache', 'sparse_cache_rate', \
                                   'sparse_cache_file_num', 'sparse_beta1_decay_rate', 'sparse_beta2_decay_rate', \
                                   'sparse_ada_epsilon', 'sparse_optimizer', 'sparse_ssd_unseenday_threshold', \
                                   'embed_sparse_optimizer', 'embed_sparse_learning_rate', 'embed_sparse_weight_bounds', \
                                   'embed_sparse_initial_range', 'embed_sparse_initial_g2sum', 'embed_sparse_beta1_decay_rate', \
                                   'embed_sparse_beta2_decay_rate', 'embedx_sparse_optimizer', 'embedx_sparse_learning_rate', \
                                   'embedx_sparse_weight_bounds', 'embedx_sparse_initial_range', 'embedx_sparse_initial_g2sum', \
                                   'embedx_sparse_beta1_decay_rate', 'embedx_sparse_beta2_decay_rate']
92 93 94 95 96

        for key in strategy:
            if key not in support_sparse_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

97
        support_table_calss = ['DownpourSparseTable', 'DownpourSparseSSDTable']
98 99 100 101
        if strategy.get('sparse_table_class') is not None:
            table_class = strategy.get('sparse_table_class')
            if table_class not in support_table_calss:
                raise ValueError(
102
                    "support sparse_table_class: [ 'DownpourSparseTable', 'DownpourSparseSSDTable'], \
103 104 105 106 107 108
                        but actual %s" % (table_class))
        else:
            table_class = 'DownpourSparseTable'

        table.table_class = table_class

109
        if table_class == 'DownpourSparseTable' or table_class == 'DownpourSparseSSDTable':
110 111 112 113 114 115
            table.enable_sparse_table_cache = strategy.get(
                'sparse_enable_cache', True)
            table.sparse_table_cache_rate = strategy.get('sparse_cache_rate',
                                                         0.00055)
            table.sparse_table_cache_file_num = strategy.get(
                'sparse_cache_file_num', 16)
116 117 118
            table.compress_in_save = strategy.get('sparse_compress_in_save',
                                                  True)
            table.shard_num = strategy.get('sparse_shard_num', 1000)
119 120 121
            # DownpourFeatureValueAccessor: for ctr task, has cvm, embedding and sgd info
            # DownpourCtrAccessor         : for ctr task, has cvm, slot, embedding and sgd info
            # DownpourSparseValueAccessor : for general task, has embedding and sgd info
122
            # DownpourCtrDoubleAccessor   : for ctr task, which show clk are in double
X
xujiaqi01 已提交
123
            # DownpourUnitAccessor        : for ctr task, has cvm, slot, embedding and sgd info
124 125

            support_accessor_class = [
126
                'DownpourFeatureValueAccessor', 'DownpourCtrAccessor',
X
xujiaqi01 已提交
127
                'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor',
T
Thunderbrook 已提交
128
                'DownpourUnitAccessor', 'DownpourDoubleUnitAccessor'
129 130 131 132 133
            ]
            if strategy.get('sparse_accessor_class') is not None:
                accessor_class = strategy.get('sparse_accessor_class')
                if accessor_class not in support_accessor_class:
                    raise ValueError(
134 135
                        "support sparse_accessor_class: ['DownpourFeatureValueAccessor', 'DownpourCtrAccessor', \
                        'DownpourSparseValueAccessor', 'DownpourCtrDoubleAccessor'], \
136 137 138 139 140 141
                            but actual %s" % (accessor_class))
            else:
                accessor_class = 'DownpourCtrAccessor'

            table.accessor.accessor_class = accessor_class

X
xujiaqi01 已提交
142 143 144
            if accessor_class == 'DownpourFeatureValueAccessor' \
                    or accessor_class == 'DownpourCtrAccessor' \
                    or accessor_class == 'DownpourCtrDoubleAccessor':
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
                table.accessor.sparse_sgd_param.learning_rate = strategy.get(
                    'sparse_learning_rate', 0.05)
                table.accessor.sparse_sgd_param.initial_g2sum = strategy.get(
                    'sparse_initial_g2sum', 3)
                table.accessor.sparse_sgd_param.initial_range = strategy.get(
                    'sparse_initial_range', 1e-4)
                if strategy.get('sparse_weight_bounds') is None:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        [-10, 10])
                else:
                    table.accessor.sparse_sgd_param.weight_bounds.extend(
                        strategy.get('sparse_weight_bounds'))
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.embedx_threshold = strategy.get(
                    'sparse_embedx_threshold', 10)
                table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
                table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
                    'sparse_nonclk_coeff', 0.1)
                table.accessor.downpour_accessor_param.click_coeff = strategy.get(
                    'sparse_click_coeff', 1)
                table.accessor.downpour_accessor_param.base_threshold = strategy.get(
                    'sparse_base_threshold', 1.5)
                table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
                    'sparse_delta_threshold', 0.25)
                table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
                    'sparse_delta_keep_days', 16)
                table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
                    'sparse_delete_after_unseen_days', 30)
173 174
                table.accessor.downpour_accessor_param.ssd_unseenday_threshold = strategy.get(
                    'sparse_ssd_unseenday_threshold', 1)
175 176 177 178
                table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
                    'sparse_show_click_decay_rate', 0.98)
                table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
                    'sparse_delete_threshold', 0.8)
179 180 181 182
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
                table1.converter = converter
                table1.deconverter = deconverter

                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
                table2.converter = converter
                table2.deconverter = deconverter
            elif accessor_class == 'DownpourSparseValueAccessor':
                optimizer_name = strategy.get("sparse_optimizer", "adam")
                table.accessor.sparse_commonsgd_param.name = optimizer_name
                table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
                table.accessor.fea_dim = int(table.accessor.embedx_dim)
                if optimizer_name == "naive":
                    table.accessor.sparse_commonsgd_param.naive.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.naive.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.naive.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adagrad":
                    table.accessor.sparse_commonsgd_param.adagrad.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.05)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adagrad.initial_g2sum = strategy.get(
                        'sparse_initial_g2sum', 3)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adagrad.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                elif optimizer_name == "adam":
                    table.accessor.sparse_commonsgd_param.adam.learning_rate = \
                        strategy.get('sparse_learning_rate', 0.001)
                    table.accessor.sparse_commonsgd_param.adam.initial_range = \
                        strategy.get('sparse_initial_range', 1e-4)
                    table.accessor.sparse_commonsgd_param.adam.beta1_decay_rate = strategy.get(
                        'sparse_beta1_decay_rate', 0.9)
                    table.accessor.sparse_commonsgd_param.adam.beta2_decay_rate = strategy.get(
                        'sparse_beta2_decay_rate', 0.999)
                    table.accessor.sparse_commonsgd_param.adam.ada_epsilon = strategy.get(
                        'sparse_ada_epsilon', 1e-8)
                    if strategy.get('sparse_weight_bounds') is None:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            [-10, 10])
                    else:
                        table.accessor.sparse_commonsgd_param.adam.weight_bounds.extend(
                            strategy.get('sparse_weight_bounds'))
                converter = strategy.get(
                    'sparse_converter',
                    "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
                deconverter = strategy.get(
246 247 248 249
                    'sparse_deconverter',
                    "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)"
                )

250 251
                table1 = table.accessor.table_accessor_save_param.add()
                table1.param = 1
252 253 254
                table1.converter = converter
                table1.deconverter = deconverter

255 256
                table2 = table.accessor.table_accessor_save_param.add()
                table2.param = 2
257 258
                table2.converter = converter
                table2.deconverter = deconverter
T
Thunderbrook 已提交
259
            elif accessor_class == 'DownpourUnitAccessor' or accessor_class == 'DownpourDoubleUnitAccessor':
X
xujiaqi01 已提交
260 261 262 263 264
                self.add_sparse_table_common_config(table, strategy)
                self.add_sparse_optimizer(table.accessor.embed_sgd_param,
                                          strategy, "embed_")
                self.add_sparse_optimizer(table.accessor.embedx_sgd_param,
                                          strategy, "embedx_")
265

266
    def add_dense_table(self, table_id, param_var, grad_var, strategy,
267
                        sparse_table_names):
D
dongdaxiang 已提交
268 269 270
        """
        Args:
            table_id(int): id of sparse params table
271 272 273 274
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the dense config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
275
        Returns:
276
            return None
D
dongdaxiang 已提交
277
        """
278
        fea_dim = 0
279 280
        dense_param_vars = []
        for p in param_var:
281
            if p.name not in sparse_table_names:
282 283 284
                dense_param_vars.append(p)

        for param in dense_param_vars:
285 286 287 288 289 290 291 292 293
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
294
                                     %(table_id, pslib.PS_DENSE_TABLE, table.type))
295 296 297

        if strategy is None:
            strategy = dict()
T
tangwei12 已提交
298
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
299
        table.table_id = table_id
300
        support_dense_key_list = ['dense_table_class', 'dense_compress_in_save', 'dense_accessor_class', \
301 302
                                  'dense_optimizer', 'dense_learning_rate', 'dense_avg_decay', 'dense_ada_decay', \
                                  'dense_ada_epsilon', 'dense_mom_decay', 'dense_naive_lr']
303 304 305 306 307 308 309

        for key in strategy:
            if key not in support_dense_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

        table.table_class = strategy.get('dense_table_class',
                                         "DownpourDenseTable")
D
dongdaxiang 已提交
310
        table.type = pslib.PS_DENSE_TABLE
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
        table.compress_in_save = strategy.get('dense_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
            'dense_accessor_class', "DownpourDenseValueAccessor")
        table.accessor.dense_sgd_param.name = strategy.get('dense_optimizer',
                                                           "adam")
        table.accessor.dense_sgd_param.adam.learning_rate = strategy.get(
            'dense_learning_rate', 5e-06)
        table.accessor.dense_sgd_param.adam.avg_decay_rate = strategy.get(
            'dense_avg_decay', 0.999993)
        table.accessor.dense_sgd_param.adam.ada_decay_rate = strategy.get(
            'dense_ada_decay', 0.9999)
        table.accessor.dense_sgd_param.adam.ada_epsilon = strategy.get(
            'dense_ada_epsilon', 1e-8)
        table.accessor.dense_sgd_param.adam.mom_decay_rate = strategy.get(
            'dense_mom_decay', 0.99)
        table.accessor.dense_sgd_param.naive.learning_rate = strategy.get(
            'dense_naive_lr', 0.0002)
D
dongdaxiang 已提交
328 329
        table.accessor.fea_dim = fea_dim

330
    def add_data_norm_table(self, table_id, learning_rate, param_var, grad_var,
331
                            strategy, sparse_table_names):
D
dongdaxiang 已提交
332 333
        """
        Args:
334
            table_id(int): id of datanorm table
335 336 337 338 339
            learning_rate(float): the learning rate used to update parameters
            param_var(list): param vars
            grad_var(list): param grad vars
            strategy(dict): the datanorm config dict
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
340
        Returns:
341
            return None
D
dongdaxiang 已提交
342
        """
343
        fea_dim = 0
344 345
        dense_param_vars = []
        for p in param_var:
346
            if p.name not in sparse_table_names:
347 348 349
                dense_param_vars.append(p)

        for param in dense_param_vars:
350 351 352 353 354 355 356 357 358
            fea_dim += reduce(lambda x, y: x * y, param.shape, 1)

        for table in self._server.downpour_server_param.downpour_table_param:
            if table.table_id == table_id:
                if table.type == pslib.PS_DENSE_TABLE:
                    table.accessor.fea_dim = fea_dim
                    return
                else:
                    raise ValueError("expect table %s type=%s, but actual type=%s" \
359
                                     %(table_id, pslib.PS_DENSE_TABLE, table.type))
360 361 362
        if strategy is None:
            strategy = dict()

363 364
        support_datanorm_key_list = ['datanorm_table_class', 'datanorm_compress_in_save', \
                                     'datanorm_accessor_class', 'datanorm_operation', 'datanorm_decay_rate']
365 366 367 368 369

        for key in strategy:
            if key not in support_datanorm_key_list:
                raise ValueError("strategy key '%s' not support" % (key))

D
dongdaxiang 已提交
370
        table = self._server.downpour_server_param.downpour_table_param.add()
D
dongdaxiang 已提交
371
        table.table_id = table_id
372
        table.table_class = strategy.get('datanorm_table_class',
373
                                         'DownpourDenseTable')
D
dongdaxiang 已提交
374
        table.type = pslib.PS_DENSE_TABLE
375 376
        table.compress_in_save = strategy.get('datanorm_compress_in_save', True)
        table.accessor.accessor_class = strategy.get(
377
            'datanorm_accessor_class', 'DownpourDenseValueAccessor')
378
        table.accessor.dense_sgd_param.name = strategy.get('datanorm_operation',
379
                                                           'summary')
380 381
        table.accessor.dense_sgd_param.summary.summary_decay_rate = strategy.get(
            'datanorm_decay_rate', 0.999999)
D
dongdaxiang 已提交
382 383
        table.accessor.fea_dim = fea_dim

X
xujiaqi01 已提交
384
    def add_sparse_optimizer(self, sgd, strategy, prefix):
T
Thunderbrook 已提交
385
        optimizer_name = strategy.get(prefix + "sparse_optimizer", "adagrad")
X
xujiaqi01 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398
        sgd.name = optimizer_name
        if optimizer_name == "naive":
            sgd.naive.learning_rate = \
                strategy.get(prefix + 'sparse_learning_rate', 0.05)
            sgd.naive.initial_range = \
                strategy.get(prefix + 'sparse_initial_range', 1e-4)
            bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10])
            sgd.naive.weight_bounds.extend(bounds)
        elif optimizer_name == "adagrad":
            sgd.adagrad.learning_rate = \
                strategy.get(prefix + 'sparse_learning_rate', 0.05)
            sgd.adagrad.initial_range = \
                strategy.get(prefix + 'sparse_initial_range', 1e-4)
T
Thunderbrook 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411
            if prefix == "embed_":
                sgd.adagrad.initial_range = 0
            sgd.adagrad.initial_g2sum = strategy.get(
                prefix + 'sparse_initial_g2sum', 3)
            bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10])
            sgd.adagrad.weight_bounds.extend(bounds)
        elif optimizer_name == "std_adagrad":
            sgd.adagrad.learning_rate = \
                strategy.get(prefix + 'sparse_learning_rate', 0.05)
            sgd.adagrad.initial_range = \
                strategy.get(prefix + 'sparse_initial_range', 1e-4)
            if prefix == "embed_":
                sgd.adagrad.initial_range = 0
X
xujiaqi01 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
            sgd.adagrad.initial_g2sum = strategy.get(
                prefix + 'sparse_initial_g2sum', 3)
            bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10])
            sgd.adagrad.weight_bounds.extend(bounds)
        elif optimizer_name == "adam":
            sgd.adam.learning_rate = \
                strategy.get(prefix + 'sparse_learning_rate', 0.001)
            sgd.adam.initial_range = \
                strategy.get(prefix + 'sparse_initial_range', 1e-4)
            sgd.adam.beta1_decay_rate = strategy.get(
                prefix + 'sparse_beta1_decay_rate', 0.9)
            sgd.adam.beta2_decay_rate = strategy.get(
                prefix + 'sparse_beta2_decay_rate', 0.999)
            sgd.adam.ada_epsilon = strategy.get(prefix + 'sparse_ada_epsilon',
                                                1e-8)
            bounds = strategy.get(prefix + 'sparse_weight_bounds', [-10, 10])
            sgd.adam.weight_bounds.extend(bounds)

    def add_sparse_table_common_config(self, table, strategy):
        table.accessor.embedx_dim = strategy.get('sparse_embedx_dim', 8)
        table.accessor.embedx_threshold = strategy.get(
            'sparse_embedx_threshold', 10)
        table.accessor.fea_dim = int(table.accessor.embedx_dim) + 3
        table.accessor.downpour_accessor_param.nonclk_coeff = strategy.get(
            'sparse_nonclk_coeff', 0.1)
        table.accessor.downpour_accessor_param.click_coeff = strategy.get(
            'sparse_click_coeff', 1)
        table.accessor.downpour_accessor_param.base_threshold = strategy.get(
            'sparse_base_threshold', 1.5)
        table.accessor.downpour_accessor_param.delta_threshold = strategy.get(
            'sparse_delta_threshold', 0.25)
        table.accessor.downpour_accessor_param.delta_keep_days = strategy.get(
            'sparse_delta_keep_days', 16)
        table.accessor.downpour_accessor_param.delete_after_unseen_days = strategy.get(
            'sparse_delete_after_unseen_days', 30)
        table.accessor.downpour_accessor_param.show_click_decay_rate = strategy.get(
            'sparse_show_click_decay_rate', 0.98)
        table.accessor.downpour_accessor_param.delete_threshold = strategy.get(
            'sparse_delete_threshold', 0.8)
        converter = strategy.get(
            'sparse_converter',
            "(scripts/xbox_compressor_mf.py | bin/xbox_pb_converter)")
        deconverter = strategy.get(
            'sparse_deconverter',
            "(bin/xbox_pb_deconverter | scripts/xbox_decompressor_mf.awk)")

        table1 = table.accessor.table_accessor_save_param.add()
        table1.param = 1
        table1.converter = converter
        table1.deconverter = deconverter

        table2 = table.accessor.table_accessor_save_param.add()
        table2.param = 2
        table2.converter = converter
        table2.deconverter = deconverter

D
dongdaxiang 已提交
468 469 470 471
    def get_desc(self):
        """
        Return downpour server program_desc
        """
D
dongdaxiang 已提交
472
        return self._server
D
dongdaxiang 已提交
473 474 475 476 477 478 479


class DownpourWorker(Worker):
    """
        DownpourWorker class is used to generate worker program_desc
        Args:
            window (int): push params frequency
480
            worker: it is pslib.DownpourTrainerParameter
D
dongdaxiang 已提交
481 482 483 484 485 486
        Examples:
            worker = DownpourWorker(1)
    """

    def __init__(self, window):
        self.window = window
D
dongdaxiang 已提交
487
        self._worker = pslib.DownpourTrainerParameter()
D
dongdaxiang 已提交
488

489 490 491 492 493
    def add_sparse_table(self,
                         table_id,
                         slot_key_vars,
                         slot_value_vars,
                         slot_value_grads=None):
D
dongdaxiang 已提交
494 495 496
        """
        Args:
            table_id(int): id of sparse params table
497 498 499
            slot_key_vars(list): slot key id
            slot_value_vars(list): slot key value after embedding
            slot_value_grads(list): grad of all params, default is None
D
dongdaxiang 已提交
500
        Returns:
501
            return None
D
dongdaxiang 已提交
502
        """
503 504 505 506 507 508 509 510 511 512 513 514 515
        if slot_value_grads is None:
            slot_value_grad_names = \
                [var.name + "@GRAD" for var in slot_value_vars]
        else:
            value_to_key = {}
            for i in range(len(slot_key_vars)):
                value_to_key[slot_value_vars[i].name] = slot_key_vars[i]
            slot_value_grad_names = []
            all_grad_names = [var.name for var in slot_value_grads]
            for var in slot_value_vars:
                if var.name + "@GRAD" in all_grad_names:
                    slot_value_grad_names.append(var.name + "@GRAD")
            sorted_slot_value_vars = [i for i in slot_value_vars if \
516
                                      i.name + "@GRAD" in slot_value_grad_names]
517
            sorted_slot_value_vars += [i for i in slot_value_vars if \
518
                                       i.name + "@GRAD" not in slot_value_grad_names]
519 520 521 522
            sorted_slot_key_vars = \
                [value_to_key[v.name] for v in sorted_slot_value_vars]

        target_table = None
523 524
        for table in self._worker.sparse_table:
            if table.table_id == table_id:
X
xujiaqi01 已提交
525
                keys = table.slot_key
526 527 528 529
                key_names = [var.name for var in sorted_slot_key_vars]
                for key_name in key_names:
                    if key_name not in keys:
                        raise ValueError("sparse table %s slot_key error" %
530
                                         table_id)
531 532
                target_table = table
                break
533

534 535 536
        table = target_table
        if table is not None:
            self._worker.sparse_table.remove(table)
T
tangwei12 已提交
537
        table = self._worker.sparse_table.add()
D
dongdaxiang 已提交
538
        table.table_id = table_id
539 540 541
        table.slot_key.extend([var.name for var in sorted_slot_key_vars])
        table.slot_value.extend([var.name for var in sorted_slot_value_vars])
        table.slot_gradient.extend(slot_value_grad_names)
D
dongdaxiang 已提交
542

543
    def add_dense_table(self, table_id, learning_rate, param_vars, grad_vars,
544
                        dense_start_table_id, sparse_table_names):
545
        r"""
D
dongdaxiang 已提交
546 547 548 549
        Args:
            table_id(int): id of sparse params table
            learning_rate(float): the learning rate used to update parameters. \
                Can be a float value
550 551 552 553
            param_vars(list): all dense param. it is a list.
            grad_vars(list): all dense grad parm it is a list.
            dense_start_table_id(int): dense table start index
            sparse_table_names(list): sparse table names
D
dongdaxiang 已提交
554
        Returns:
555
            return None
D
dongdaxiang 已提交
556
        """
557
        sparse_table_name_grad = []
558
        for name in sparse_table_names:
559 560 561 562
            sparse_table_name_grad.append(name + "@GRAD")

        dense_param_name = []
        for p in param_vars:
563
            if p.name not in sparse_table_names:
564 565 566 567 568 569 570 571 572
                dense_param_name.append(p.name)

        dense_grad_name = []
        for g in grad_vars:
            if g.name not in sparse_table_name_grad:
                dense_grad_name.append(g.name)

        dense_param_name.sort()
        dense_grad_name.sort()
573

574 575
        for table in self._worker.dense_table:
            if table.table_id == table_id:
576
                desc_dense_param_name = list(table.dense_variable_name)
577 578 579
                desc_dense_param_name.sort()

                if dense_param_name == desc_dense_param_name:
580 581
                    desc_dense_grad_name = list(
                        table.dense_gradient_variable_name)
582 583
                    desc_dense_grad_name.sort()
                    if dense_grad_name == desc_dense_grad_name:
584 585 586
                        return
                    else:
                        raise ValueError(
587 588
                            "dense table %s dense_gradient_variable_name "
                            "error" % table_id)
589 590 591 592
                else:
                    raise ValueError(
                        "dense table %s dense_variable_name error" % table_id)

D
dongdaxiang 已提交
593
        table = self._worker.dense_table.add()
D
dongdaxiang 已提交
594
        table.table_id = table_id
595

596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
        #def cmp_fc(x, y):
        #    if x.startswith("fc_") and y.startswith("fc_"):
        #        index_x = x.find('.')
        #        index_y = y.find('.')
        #        if index_x > 0 and index_y > 0:
        #            num_x = x[3:index_x]
        #            num_y = y[3:index_y]
        #            if num_x.isdigit() and num_y.isdigit():
        #                if int(num_x) < int(num_y):
        #                    return -1
        #                if int(num_x) > int(num_y):
        #                    return 1
        #                if x[index_x + 1] == 'w' and y[index_y + 1] == 'b':
        #                    return -1
        #                if x[index_x + 1] == 'b' and y[index_y + 1] == 'w':
        #                    return 1
        #    if x < y:
        #        return -1
        #    else:
        #        return 1

        #table.dense_variable_name.extend(sorted(dense_param_name, cmp_fc))
        #table.dense_gradient_variable_name.extend(
        #    sorted(dense_grad_name, cmp_fc))
        table.dense_variable_name.extend(dense_param_name)
        table.dense_gradient_variable_name.extend(dense_grad_name)
D
dongdaxiang 已提交
622 623 624 625 626

    def get_desc(self):
        """
        Return downpour worker program_desc
        """
D
dongdaxiang 已提交
627
        return self._worker