io.py 59.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
import os
T
bug fix  
tangwei12 已提交
18
import errno
D
dzhwinter 已提交
19
import warnings
20
import six
21
import logging
22
from functools import reduce
23

H
hong 已提交
24 25
import numpy as np

26 27 28
import paddle
import paddle.reader
from paddle.reader import *
29
from paddle.fluid import layers
H
hong 已提交
30
from paddle.fluid.executor import Executor, global_scope
31
from paddle.fluid.evaluator import Evaluator
32
from paddle.fluid.framework import Program, Parameter, default_main_program, default_startup_program, Variable, program_guard
T
tangwei12 已提交
33
from paddle.fluid.compiler import CompiledProgram
34
from paddle.fluid.log_helper import get_logger
S
sneaxiy 已提交
35 36
from . import reader
from .reader import *
K
fix bug  
Kexin Zhao 已提交
37
from . import core
38
from .. import compat as cpt
39

40 41
batch = paddle.batch

42
__all__ = [
T
tangwei12 已提交
43
    'save_vars', 'save_params', 'save_persistables', 'load_vars', 'load_params',
H
hong 已提交
44 45
    'load_persistables', 'save_inference_model', 'load_inference_model',
    'batch', 'save', 'load'
46
] + reader.__all__ + paddle.reader.__all__
47

48 49
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s')
50

51 52

def is_parameter(var):
F
fengjiayi 已提交
53 54
    """
    Check whether the given variable is an instance of Parameter.
55 56

    Args:
F
fengjiayi 已提交
57
        var(Variable): The variable to be checked.
58 59

    Returns:
F
fengjiayi 已提交
60 61 62 63 64 65
        bool: True if the given `var` is an instance of Parameter,
        False if not.

    Examples:
        .. code-block:: python

66
            import paddle.fluid as fluid
F
fengjiayi 已提交
67 68
            param = fluid.default_main_program().global_block().var('fc.w')
            res = fluid.io.is_parameter(param)
69
    """
70 71 72 73
    return isinstance(var, Parameter)


def is_persistable(var):
F
fengjiayi 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86
    """
    Check whether the given variable is persistable.

    Args:
        var(Variable): The variable to be checked.

    Returns:
        bool: True if the given `var` is persistable
        False if not.

    Examples:
        .. code-block:: python

87
            import paddle.fluid as fluid
88
            param = fluid.default_main_program().global_block().var('fc.b')
F
fengjiayi 已提交
89 90
            res = fluid.io.is_persistable(param)
    """
91
    if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
Y
yuyang18 已提交
92 93
            var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var.desc.type() == core.VarDesc.VarType.READER:
94
        return False
95 96 97
    return var.persistable


H
hong 已提交
98 99 100 101
def is_belong_to_optimizer(var):
    return var.belong_to_optimizer


102 103
def _clone_var_in_block_(block, var):
    assert isinstance(var, Variable)
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    if var.desc.type() == core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)
119 120


C
chengduo 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134
def _get_valid_program(main_program):
    if main_program is None:
        main_program = default_main_program()
    elif isinstance(main_program, CompiledProgram):
        main_program = main_program._program
        if main_program is None:
            raise TypeError("program should be as Program type or None")
        warnings.warn(
            "The input is a CompiledProgram, this is not recommended.")
    if not isinstance(main_program, Program):
        raise TypeError("program should be as Program type or None")
    return main_program


135 136 137 138 139
def save_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
140
              filename=None):
141
    """
142
    This API saves specific variables in the `Program` to files.
F
fengjiayi 已提交
143

144 145 146
    There are two ways to specify the variables to be saved: set variables in 
    a list and assign it to the `vars`, or use the `predicate` function to select
    variables that make `predicate(variable) == True`. The first way has a higher priority.
147

148 149 150
    The `dirname` is used to specify the folder where to save variables.
    If you prefer to save variables in separate files in the `dirname` floder,
    do not set `filename`. If you prefer to save all variables in a single file,
F
fengjiayi 已提交
151
    use `filename` to specify it.
152

F
fengjiayi 已提交
153 154
    Args:
        executor(Executor): The executor to run for saving variables.
155 156
        dirname(str): The folder where to save variables.
        main_program(Program, optional): The program whose variables will be saved.
157
                                    If it is None, the default main program will
F
fengjiayi 已提交
158 159
                                    be used automatically.
                                    Default: None
160 161 162 163 164 165 166 167
        vars(list[Variable], optional): The list contains all variables to be saved.
                                        Default: None
        predicate(function, optional): The function selects the variables that make
                                       `predicate(variable) == True`. 
                                       Default: None
        filename(str, optional): If you prefer to save all variables in a single file,
                                 use `filename` to specify it. Otherwise, let `filename` be None. 
                                 Default: None
F
fengjiayi 已提交
168 169 170 171 172 173 174 175 176 177

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

178
            import paddle.fluid as fluid
179

180 181 182 183 184 185 186 187 188 189 190
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
191

192
            # The first usage: use `vars` to set the saved variables.
193 194
            var_list = [w, b]
            path = "./my_paddle_vars"
195
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
196 197 198 199 200 201 202 203 204 205
                            filename="vars_file")
            # w and b will be save in a file named "var_file".

            # The second usage: use `predicate` to select the saved variable.
            def name_has_fc(var):
                res = "fc" in var.name
                return res
            param_path = "./my_paddle_model"
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog, vars=None, predicate = name_has_fc)
            # all variables whose names contain "fc " are saved.
206
    """
L
lujun 已提交
207
    save_dirname = os.path.normpath(dirname)
C
chengduo 已提交
208
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
209

210 211 212
    if vars is None:
        save_vars(
            executor,
213
            main_program=main_program,
L
lujun 已提交
214
            dirname=save_dirname,
215
            vars=list(filter(predicate, main_program.list_vars())),
216
            filename=filename)
217
    else:
218 219 220 221 222 223 224
        # give warning when there is no var in model
        if len(list(vars)) == 0:
            warnings.warn(
                "no variable in your model, please ensure there are any variables in your model to save"
            )
            return None

225 226
        save_program = Program()
        save_block = save_program.global_block()
227 228

        save_var_map = {}
229
        for each_var in vars:
230 231 232
            # NOTE: don't save the variable which type is RAW
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
233
            new_var = _clone_var_in_block_(save_block, each_var)
234
            if filename is None:
235 236
                save_file_path = os.path.join(save_dirname, new_var.name)
                save_file_path = os.path.normpath(save_file_path)
237 238 239 240
                save_block.append_op(
                    type='save',
                    inputs={'X': [new_var]},
                    outputs={},
241
                    attrs={'file_path': save_file_path})
242 243 244
            else:
                save_var_map[new_var.name] = new_var

245
        if filename is not None:
246 247 248 249
            save_var_list = []
            for name in sorted(save_var_map.keys()):
                save_var_list.append(save_var_map[name])

250
            save_block.append_op(
251 252
                type='save_combine',
                inputs={'X': save_var_list},
253
                outputs={},
L
lujun 已提交
254
                attrs={'file_path': os.path.join(save_dirname, filename)})
255

256 257 258
        executor.run(save_program)


259
def save_params(executor, dirname, main_program=None, filename=None):
260
    """
F
fengjiayi 已提交
261 262 263
    This function filters out all parameters from the give `main_program`
    and then save them to the folder `dirname` or the file `filename`.

264 265 266
    Use the `dirname` to specify the saving folder. If you would like to
    save parameters in separate files, set `filename` None; if you would
    like to save all parameters in a single file, use `filename` to specify
F
fengjiayi 已提交
267 268
    the file name.

269 270 271
    NOTICE: Some variables are not Parameter while they are necessary for
    training. So you can NOT save and continue your training just by
    `save_params()` and `load_params()`. Please use `save_persistables()`
272 273 274
    and `load_persistables()` instead. If you want to save your model for
    the inference, please use the `save_inference_model` API. You can refer
    to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
275 276 277 278 279 280 281 282

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program|None): The program whose parameters will be
                                    saved. If it is None, the default
                                    main program will be used automatically.
                                    Default: None
283 284
        filename(str|None): The file to save all parameters. If you prefer
                            to save parameters in differnet files, set it
F
fengjiayi 已提交
285 286 287 288 289 290 291 292 293
                            to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
294 295
            import paddle.fluid as fluid

F
fengjiayi 已提交
296 297 298
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
299
            fluid.io.save_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
300
                                 main_program=None)
301 302 303 304
    """
    save_vars(
        executor,
        dirname=dirname,
305
        main_program=main_program,
306
        vars=None,
307
        predicate=is_parameter,
308
        filename=filename)
309 310


311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332
def _save_distributed_persistables(executor, dirname, main_program):
    """
    save_persistables for distributed training.
    the method will do things listed below:
    1.save part of persistable variables on trainer.
    2.receive "remote prefetch variables" from parameter servers and merge them.
    3.save "distributed lookup table" on parameter servers.
    4.receive "optimizer variables" from parameter servers and merge them.

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The saving directory path.
        main_program(Program): The program whose parameters will be
                            saved. the main_program must be the trainer_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

333
            import paddle.fluid as fluid
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            train_program = t.get_trainer_program()
            _save_distributed_persistables(executor=exe, dirname=param_path, main_program=train_program)
    """

    def __save_remote_params(executor, dirname, remote_params_map):
        """
        recive params on pserver through rpc.
        if the params are be sliced, will concat them to one, then save it.
        """
        if not remote_params_map:
            return

        prog = Program()
        block = prog.global_block()

        # recv optimize vars from pserver
        for name, remote_params in remote_params_map.items():
            origin_var = None
            is_slice = False
            slice_vars = [0] * len(remote_params)
            slice_var_names = [""] * len(remote_params)
            endpoints = [""] * len(remote_params)

            for idx, optimizer in enumerate(remote_params):
                origin = optimizer.origin
                slice = optimizer.slice
                is_slice = optimizer.is_slice
                block_id = optimizer.block_id
                endpoint = optimizer.endpoint

                if idx == 0:
                    origin_var = block.create_var(
                        name=origin.name,
                        type=origin.type,
                        shape=origin.shape,
                        dtype=origin.dtype,
                        persistable=True)

                slice_var = block.create_var(
                    name="{}.slice.{}".format(slice.name, idx),
                    type=slice.type,
                    shape=slice.shape,
                    dtype=slice.dtype,
                    persistable=True)

                index = block_id if is_slice else idx
                slice_vars[index] = slice_var
                slice_var_names[index] = slice.name
                endpoints[index] = endpoint

            if is_slice:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": slice_vars},
                    attrs={
                        "epmap": endpoints,
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
                block.append_op(
                    type='concat',
                    inputs={'X': slice_vars},
                    outputs={'Out': origin_var},
                    attrs={})
            else:
                block.append_op(
                    type='recv',
                    inputs={"X": []},
                    outputs={"Out": [origin_var]},
                    attrs={
                        "epmap": endpoints[:1],
                        "with_barrier": False,
                        "varnames": slice_var_names,
                        "sync_mode": True
                    })
            block.append_op(
                type='save',
                inputs={'X': [origin_var]},
                outputs={},
                attrs={'file_path': os.path.join(dirname, origin_var.name)})
            block.append_op(type='delete_var', inputs={'X': slice_vars})
        executor.run(prog)

    def __save_distributed_lookup_tables(executor, dirname,
                                         distributed_lookup_table, endpoints):
        """
        because the distributed lookup table may too huge to merge and save at one place,
        it will be saved at parameter server independent respectively.

        the save directory is dirname/"__lookup_table__".

        """
        prog = Program()
        block = prog.global_block()

        # if there is lookup table, the trainer 0 will notify all pserver to save.
        lookup_table_filename = os.path.join(dirname, "__lookup_table__")
        attrs = {}
        attrs['epmap'] = endpoints
        attrs['dir'] = lookup_table_filename
        attrs['lookup_table'] = distributed_lookup_table
        block.append_op(
            type='checkpoint_notify', inputs={}, outputs={}, attrs=attrs)
        executor.run(prog)

    def __exclude_vars(exclude_var_names=[]):
        def is_valid(var):
            if var.name in exclude_var_names:
                return False
            if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                        var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                        var.desc.type() == core.VarDesc.VarType.READER:
                return False
            return var.persistable

        return is_valid

    if not isinstance(main_program, Program):
T
tangwei12 已提交
458
        raise TypeError("'main_program' should be an instance of Program.")
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491

    if not main_program._is_distributed:
        raise ValueError(
            "'_save_distributed_persistables' just be designed for distributed training."
        )

    remote_params_map = main_program._parameters_on_pservers.get_distributed_vars_by_vtypes(
        ["Optimizer", "RemotePrefetch"], groupby=True)

    exclude_var_names = []
    if remote_params_map:
        exclude_var_names.extend(remote_params_map.keys())

    if main_program._distributed_lookup_table:
        if isinstance(main_program._distributed_lookup_table, list):
            exclude_var_names.extend(main_program._distributed_lookup_table)
        else:
            exclude_var_names.append(main_program._distributed_lookup_table)

    local_vars = list(
        filter(__exclude_vars(exclude_var_names), main_program.list_vars()))
    save_vars(
        executor, main_program=main_program, dirname=dirname, vars=local_vars)

    if main_program._is_chief:
        if remote_params_map:
            __save_remote_params(executor, dirname, remote_params_map)
        if main_program._distributed_lookup_table:
            __save_distributed_lookup_tables(
                executor, dirname, main_program._distributed_lookup_table,
                main_program._endpoints)


492
def save_persistables(executor, dirname, main_program=None, filename=None):
493
    """
494 495
    This function filters out all variables with `persistable==True` from the
    give `main_program` and then saves these variables to the folder `dirname`
F
fengjiayi 已提交
496 497
    or file `filename`.

498 499 500
    The `dirname` is used to specify the folder where persistable variables
    are going to be saved. If you would like to save variables in separate
    files, set `filename` None; if you would like to save all variables in a
F
fengjiayi 已提交
501 502 503 504 505
    single file, use `filename` to specify the file name.

    Args:
        executor(Executor): The executor to run for saving persistable variables.
        dirname(str): The directory path.
506 507
        main_program(Program|None): The program whose persistbale variables will
                                    be saved. If it is None, the default main
F
fengjiayi 已提交
508 509
                                    program will be used automatically.
                                    Default: None
510
        filename(str|None): The file to saved all variables. If you prefer to
F
fengjiayi 已提交
511 512 513 514 515 516 517 518 519
                            save variables in differnet files, set it to None.
                            Default: None

    Returns:
        None

    Examples:
        .. code-block:: python

H
Huihuang Zheng 已提交
520 521
            import paddle.fluid as fluid

F
fengjiayi 已提交
522 523
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
524
            # `prog` can be a program defined by the user
F
fengjiayi 已提交
525
            prog = fluid.default_main_program()
526
            fluid.io.save_persistables(executor=exe, dirname=param_path,
527
                                       main_program=prog)
528
    """
529 530 531 532 533 534 535 536 537 538 539
    if main_program and main_program._is_distributed:
        _save_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        save_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            vars=None,
            predicate=is_persistable,
            filename=filename)
540 541


542 543 544 545 546
def load_vars(executor,
              dirname,
              main_program=None,
              vars=None,
              predicate=None,
547
              filename=None):
548
    """
549
    This API loads variables from files by executor.
F
fengjiayi 已提交
550

551 552 553 554
    There are two ways to specify the variables to be loaded: the first way, set
    variables in a list and assign it to the `vars`; the second way, use the 
    `predicate` function to select variables that make `predicate(variable) == True`. 
    The first way has a higher priority.
F
fengjiayi 已提交
555

556
    The `dirname` is used to specify the folder where to load variables.
557
    If variables were saved in separate files in the folder `dirname`,
558
    set `filename` None. If all variables were saved in a single file,
F
fengjiayi 已提交
559
    use `filename` to specify it.
560

F
fengjiayi 已提交
561 562
    Args:
        executor(Executor): The executor to run for loading variables.
563 564
        dirname(str): The folder where to load the variables.
        main_program(Program, optional): The program whose variables will be loaded.
565
                                    If it is None, the default main program will
F
fengjiayi 已提交
566 567
                                    be used automatically.
                                    Default: None
568
        vars(list[Variable], optional): The list that contains all variables to be loaded.
F
fengjiayi 已提交
569
                                   Default: None
570 571 572 573 574 575
        predicate(function, optional): The function selects variables that make 
                                        `predicate(variable) == True`.
                                        Default: None
        filename(str, optional): The file which saved all required variables. If variables
                                were saved in separate files, set it to be None.
                                Default: None
F
fengjiayi 已提交
576 577 578 579 580 581 582 583 584 585

    Returns:
        None

    Raises:
        TypeError: If `main_program` is not an instance of Program nor None.

    Examples:
        .. code-block:: python

586
            import paddle.fluid as fluid
587

588 589 590 591 592 593 594 595 596 597 598
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32', name='fc_w')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32', name='fc_b')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
F
fengjiayi 已提交
599

600 601 602 603 604 605 606 607 608 609 610
            # The first usage: using `vars` to specify the variables.
            path = "./my_paddle_vars"
            var_list = [w, b]
            fluid.io.save_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            fluid.io.load_vars(executor=exe, dirname=path, vars=var_list,
                               filename="vars_file")
            # w and b will be loaded, and they are supposed to
            # be saved in the same file named 'var_file' in the path "./my_paddle_vars".

            # The second usage: using the `predicate` function to select variables
611
            param_path = "./my_paddle_model"
F
fengjiayi 已提交
612 613 614
            def name_has_fc(var):
                res = "fc" in var.name
                return res
615 616 617
            fluid.io.save_vars(executor=exe, dirname=param_path, main_program=main_prog,
                              vars=None, predicate=name_has_fc)
            fluid.io.load_vars(executor=exe, dirname=param_path, main_program=main_prog,
C
chengduo 已提交
618
                               vars=None, predicate=name_has_fc)
619 620
            # Load All variables in the `main_program` whose name includes "fc".
            # And all the variables are supposed to be saved in separate files.
F
fengjiayi 已提交
621

622
    """
L
lujun 已提交
623
    load_dirname = os.path.normpath(dirname)
T
tangwei12 已提交
624

625
    if vars is None:
626
        if main_program is None:
Y
Yu Yang 已提交
627
            main_program = default_main_program()
628
        if not isinstance(main_program, Program):
629 630 631 632
            raise TypeError("program's type should be Program")

        load_vars(
            executor,
L
lujun 已提交
633
            dirname=load_dirname,
T
tangwei12 已提交
634
            main_program=main_program,
635
            vars=list(filter(predicate, main_program.list_vars())),
636
            filename=filename)
637 638 639
    else:
        load_prog = Program()
        load_block = load_prog.global_block()
640

641 642
        if main_program is None:
            main_program = default_main_program()
T
tangwei12 已提交
643

644 645 646
        if not isinstance(main_program, Program):
            raise TypeError("program should be as Program type or None")

H
hong 已提交
647 648
        #save origin param shape
        orig_para_shape = {}
649
        load_var_map = {}
650 651
        for each_var in vars:
            assert isinstance(each_var, Variable)
T
tangwei12 已提交
652 653
            if each_var.type == core.VarDesc.VarType.RAW:
                continue
H
hong 已提交
654 655 656 657 658 659

            if isinstance(each_var, Parameter):
                var_temp = paddle.fluid.global_scope().find_var(each_var.name)
                assert var_temp != None, "can't not find var: " + each_var.name
                orig_para_shape[each_var.name] = (
                    np.array(var_temp.get_tensor())).shape
660
            new_var = _clone_var_in_block_(load_block, each_var)
661
            if filename is None:
662 663 664 665
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [new_var]},
L
lujun 已提交
666 667 668
                    attrs={
                        'file_path': os.path.join(load_dirname, new_var.name)
                    })
669 670 671
            else:
                load_var_map[new_var.name] = new_var

672
        if filename is not None:
673 674 675 676
            load_var_list = []
            for name in sorted(load_var_map.keys()):
                load_var_list.append(load_var_map[name])

677
            load_block.append_op(
678
                type='load_combine',
679
                inputs={},
680
                outputs={"Out": load_var_list},
L
lujun 已提交
681
                attrs={'file_path': os.path.join(load_dirname, filename)})
682 683
        executor.run(load_prog)

H
hong 已提交
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
        #check var shape
        for each_var in vars:
            if not isinstance(each_var, Parameter):
                continue
            var_temp = paddle.fluid.global_scope().find_var(each_var.name)
            assert var_temp != None, "can't not find var: " + each_var.name
            new_shape = (np.array(var_temp.get_tensor())).shape
            assert each_var.name in orig_para_shape, earch_var.name + "MUST in var list"
            orig_shape = orig_para_shape.get(each_var.name)
            if new_shape != orig_shape:
                raise RuntimeError(
                    "Shape not matching: the Program requires a parameter with a shape of ({}), "
                    "while the loaded parameter (namely [ {} ]) has a shape of  ({}).".
                    format(orig_shape, each_var.name, new_shape))

699

700
def load_params(executor, dirname, main_program=None, filename=None):
701
    """
702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
    This API filters out all parameters from the give ``main_program``
    and then tries to load these parameters from the directory ``dirname`` or
    the file ``filename``.

    Use the ``dirname`` to specify the directory where parameters were saved. If
    parameters were saved in separate files under the directory `dirname`, set
    ``filename`` as None; if all parameters were saved in a single file, use
    ``filename`` to specify the file name.

    **Note**:
        Some variables are not Parameter while they are necessary for
        training, such as learning rate, global step, etc. So you cannot save and
        continue your training just by using :ref:`api_fluid_io_save_params` and
        :ref:`api_fluid_io_load_params`. Please use :ref:`api_fluid_io_save_persistables`
        and :ref:`api_fluid_io_load_persistables` instead.

        If you want to load the pre-trained model structure and parameters
        for the inference, please use the :ref:`api_fluid_io_load_inference_model` API. You can
        refer to :ref:`api_guide_model_save_reader_en` for more details.
F
fengjiayi 已提交
721 722

    Args:
723 724
        executor(Executor): The executor used for loading parameters.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
725
        dirname(str): The directory path.
726 727 728 729 730 731 732 733
        main_program(Program, optional): The program whose parameters will be
                                    loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all parameters. If parameters
                            were saved in separated files, set it to None.
                            Default: None.
F
fengjiayi 已提交
734 735 736 737 738 739 740

    Returns:
        None

    Examples:
        .. code-block:: python

741
            import paddle.fluid as fluid
742

F
fengjiayi 已提交
743 744 745
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
746
            fluid.io.load_params(executor=exe, dirname=param_path,
F
fengjiayi 已提交
747
                                main_program=None)
748 749
    """
    load_vars(
750 751 752
        executor,
        dirname=dirname,
        main_program=main_program,
753
        predicate=is_parameter,
754
        filename=filename)
755 756


757
def load_persistables(executor, dirname, main_program=None, filename=None):
758
    """
759 760 761
    This API filters out all variables with ``persistable==True`` from the
    given ``main_program`` and then tries to load these variables from the
    directory ``dirnameme`` or the file ``filename``.
F
fengjiayi 已提交
762

763 764 765 766
    Use the ``dirname`` to specify the directory where persistable variables
    (refer to :ref:`api_guide_model_save_reader_en`) were saved. If variables
    were saved in separate files, set ``filename`` as None; if all variables
    were saved in a single file, use ``filename`` to specify the file name.
F
fengjiayi 已提交
767 768

    Args:
769 770
        executor(Executor): The executor used for loading persistable variables.
                            See :ref:`api_guide_executor_en` for more details about it.
F
fengjiayi 已提交
771
        dirname(str): The directory path.
772 773 774 775 776 777 778 779
        main_program(Program, optional): The program whose persistbale variables will
                                    be loaded. If it is None, the ``default_main_program``
                                    will be used automatically. See :ref:`api_guide_Program_en`
                                    for more about ``Program``.
                                    Default: None.
        filename(str, optional): The file which saved all persistable variables. If variables
                                 were saved in separated files, set it to None.
                                 Default: None.
F
fengjiayi 已提交
780 781 782 783 784 785 786

    Returns:
        None

    Examples:
        .. code-block:: python

787
            import paddle.fluid as fluid
788

F
fengjiayi 已提交
789 790 791
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            prog = fluid.default_main_program()
792
            fluid.io.load_persistables(executor=exe, dirname=param_path,
F
fengjiayi 已提交
793
                                       main_program=None)
794
    """
795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825

    if main_program and main_program._is_distributed:
        _load_distributed_persistables(
            executor, dirname=dirname, main_program=main_program)
    else:
        load_vars(
            executor,
            dirname=dirname,
            main_program=main_program,
            predicate=is_persistable,
            filename=filename)


def _load_distributed_persistables(executor, dirname, main_program=None):
    """
    customized load_persistables for distributed training.
    it should be used on parameter server,

    Args:
        executor(Executor): The executor to run for saving parameters.
        dirname(str): The load directory path.
        main_program(Program): The program whose parameters will be
                            loaded. the main_program must be the pserver_program
                            get after transpiler.

    Returns:
        None

    Examples:
        .. code-block:: python

826
            import paddle.fluid as fluid
827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
            exe = fluid.Executor(fluid.CPUPlace())
            param_path = "./my_paddle_model"
            t = distribute_transpiler.DistributeTranspiler()
            t.transpile(...)
            pserver_prog = t.get_pserver_program(...)
            _load_distributed_persistables(executor=exe, dirname=param_path, main_program=pserver_prog)
    """

    def __is_distributed_part_var(varname):
        trainer_idx = varname.find(".trainer_")
        block_idx = varname.find(".block")
        return trainer_idx or block_idx

    def __load_persistable_vars(executor, dirname, need_load_vars):
        load_prog = Program()
        load_block = load_prog.global_block()
        need_delete_vars = []

        for param in need_load_vars:
            origin_var = param.origin
            slice_var = param.slice
            is_slice = param.is_slice
            offset = param.offset

            if is_slice:
                origin = load_block.create_var(
                    name="{}.load".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)

                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

                slice = load_block.create_var(
                    name=slice_var.name,
                    type=slice_var.type,
                    shape=slice_var.shape,
                    dtype=slice_var.dtype,
                    persistable=True)

T
tangwei12 已提交
874 875 876 877
                dim1_flatten = 1
                if len(slice.shape) >= 2:
                    dim1_flatten = reduce(lambda x, y: x * y, slice.shape[1:])

878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
                start = int(offset / dim1_flatten)
                end = int(offset / dim1_flatten + slice.shape[0])

                load_block.append_op(
                    type="slice",
                    inputs={'Input': origin},
                    outputs={'Out': slice},
                    attrs={'axes': [0],
                           'starts': [start],
                           'ends': [end]})

                need_delete_vars.append(origin)
            else:
                origin = load_block.create_var(
                    name="{}".format(origin_var.name),
                    type=origin_var.type,
                    shape=origin_var.shape,
                    dtype=origin_var.dtype,
                    persistable=True)
                load_block.append_op(
                    type='load',
                    inputs={},
                    outputs={'Out': [origin]},
                    attrs={
                        'file_path': os.path.join(dirname, origin_var.name)
                    })

        load_block.append_op(
            type='delete_var',
            inputs={'X': need_delete_vars}, )

        executor.run(load_prog)

    if not isinstance(main_program, Program):
T
tangwei12 已提交
912
        raise TypeError("'main_program' should be an instance of Program.")
913 914 915 916 917 918 919 920 921 922 923 924 925 926

    if not main_program._is_distributed:
        raise ValueError(
            "'_load_distributed_persistables' just be designed for distributed training."
        )

    if not main_program._ps_endpoint:
        raise ValueError(
            "'_load_distributed_persistables' need current_endpoint set in DistributeTranspiler.transpile"
        )

    need_load_vars = main_program._parameters_on_pservers.get_distributed_vars_by_ep(
        main_program._ps_endpoint)
    __load_persistable_vars(executor, dirname, need_load_vars)
927 928


929 930 931
def prepend_feed_ops(inference_program,
                     feed_target_names,
                     feed_holder_name='feed'):
Q
Qiao Longfei 已提交
932 933 934
    if len(feed_target_names) == 0:
        return

K
Kexin Zhao 已提交
935 936
    global_block = inference_program.global_block()
    feed_var = global_block.create_var(
937 938 939
        name=feed_holder_name,
        type=core.VarDesc.VarType.FEED_MINIBATCH,
        persistable=True)
K
Kexin Zhao 已提交
940

941
    for i, name in enumerate(feed_target_names):
K
fix bug  
Kexin Zhao 已提交
942
        out = global_block.var(name)
W
Wu Yi 已提交
943
        global_block._prepend_op(
K
Kexin Zhao 已提交
944 945
            type='feed',
            inputs={'X': [feed_var]},
K
fix bug  
Kexin Zhao 已提交
946
            outputs={'Out': [out]},
K
Kexin Zhao 已提交
947 948 949
            attrs={'col': i})


950 951 952
def append_fetch_ops(inference_program,
                     fetch_target_names,
                     fetch_holder_name='fetch'):
K
Kexin Zhao 已提交
953 954
    global_block = inference_program.global_block()
    fetch_var = global_block.create_var(
955 956 957
        name=fetch_holder_name,
        type=core.VarDesc.VarType.FETCH_LIST,
        persistable=True)
K
Kexin Zhao 已提交
958

959
    for i, name in enumerate(fetch_target_names):
K
Kexin Zhao 已提交
960 961 962 963 964 965 966
        global_block.append_op(
            type='fetch',
            inputs={'X': [name]},
            outputs={'Out': [fetch_var]},
            attrs={'col': i})


967 968 969 970
def save_inference_model(dirname,
                         feeded_var_names,
                         target_vars,
                         executor,
971
                         main_program=None,
972
                         model_filename=None,
973
                         params_filename=None,
T
tangwei12 已提交
974 975
                         export_for_deployment=True,
                         program_only=False):
976
    """
F
fengjiayi 已提交
977 978
    Prune the given `main_program` to build a new program especially for inference,
    and then save it and all related parameters to given `dirname` by the `executor`.
979 980 981 982
    If you just want to save parameters of your trained model, please use the
    `save_params` API. You can refer to :ref:`api_guide_model_save_reader_en` for
    more details.

F
fengjiayi 已提交
983 984 985

    Args:
        dirname(str): The directory path to save the inference model.
986
        feeded_var_names(list[str]): Names of variables that need to be feeded data
F
fengjiayi 已提交
987
                                     during inference.
988
        target_vars(list[Variable]): Variables from which we can get inference
F
fengjiayi 已提交
989 990
                                     results.
        executor(Executor): The executor that saves the inference model.
991 992
        main_program(Program|None): The original program, which will be pruned to
                                    build the inference model. If is setted None,
F
fengjiayi 已提交
993 994
                                    the default main program will be used.
                                    Default: None.
995 996
        model_filename(str|None): The name of file to save the inference program
                                  itself. If is setted None, a default filename
F
fengjiayi 已提交
997
                                  `__model__` will be used.
998 999
        params_filename(str|None): The name of file to save all related parameters.
                                   If it is setted None, parameters will be saved
F
fengjiayi 已提交
1000
                                   in separate files .
X
Xin Pan 已提交
1001 1002 1003 1004 1005
        export_for_deployment(bool): If True, programs are modified to only support
                                     direct inference deployment. Otherwise,
                                     more information will be stored for flexible
                                     optimization and re-training. Currently, only
                                     True is supported.
T
tangwei12 已提交
1006
        program_only(bool): If True, It will save inference program only, and do not save params of Program.
1007

F
fengjiayi 已提交
1008
    Returns:
F
flame 已提交
1009
        target_var_name_list(list): The fetch variables' name list
F
fengjiayi 已提交
1010 1011 1012 1013 1014 1015 1016

    Raises:
        ValueError: If `feed_var_names` is not a list of basestring.
        ValueError: If `target_vars` is not a list of Variable.

    Examples:
        .. code-block:: python
F
fengjiayi 已提交
1017

1018 1019
            import paddle.fluid as fluid

F
fengjiayi 已提交
1020 1021
            path = "./infer_model"

1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
            # User defined network, here a softmax regresssion example
            image = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')
            feeder = fluid.DataFeeder(feed_list=[image, label], place=fluid.CPUPlace())
            predict = fluid.layers.fc(input=image, size=10, act='softmax')

            loss = fluid.layers.cross_entropy(input=predict, label=label)
            avg_loss = fluid.layers.mean(loss)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            # Feed data and train process

            # Save inference model. Note we don't save label and loss in this example
            fluid.io.save_inference_model(dirname=path,
                                          feeded_var_names=['img'],
                                          target_vars=[predict],
                                          executor=exe)

            # In this example, the function will prune the default main program
            # to make it suitable for infering the `predict` var. The pruned
1044
            # inference program is going to be saved in the "./infer_model/__model__"
F
fengjiayi 已提交
1045
            # and parameters are going to be saved in separate files under folder
1046
            # "./infer_model".
1047 1048

    """
M
minqiyang 已提交
1049
    if isinstance(feeded_var_names, six.string_types):
F
fengjiayi 已提交
1050
        feeded_var_names = [feeded_var_names]
X
Xin Pan 已提交
1051
    elif export_for_deployment:
Q
Qiao Longfei 已提交
1052
        if len(feeded_var_names) > 0:
1053
            # TODO(paddle-dev): polish these code blocks
Q
Qiao Longfei 已提交
1054
            if not (bool(feeded_var_names) and all(
M
minqiyang 已提交
1055
                    isinstance(name, six.string_types)
1056
                    for name in feeded_var_names)):
M
minqiyang 已提交
1057
                raise ValueError("'feed_var_names' should be a list of str.")
F
fengjiayi 已提交
1058 1059

    if isinstance(target_vars, Variable):
F
fengjiayi 已提交
1060
        target_vars = [target_vars]
X
Xin Pan 已提交
1061
    elif export_for_deployment:
1062 1063
        if not (bool(target_vars) and
                all(isinstance(var, Variable) for var in target_vars)):
F
fengjiayi 已提交
1064 1065
            raise ValueError("'target_vars' should be a list of Variable.")

C
chengduo 已提交
1066
    main_program = _get_valid_program(main_program)
T
tangwei12 已提交
1067

1068 1069 1070 1071 1072 1073 1074 1075 1076
    # remind user to set auc_states to zeros if the program contains auc op 
    all_ops = main_program.global_block().ops
    for op in all_ops:
        if op.type == 'auc':
            warnings.warn(
                "please ensure that you have set the auc states to zeros before saving inference model"
            )
            break

1077 1078 1079 1080 1081
    # fix the bug that the activation op's output as target will be pruned.
    # will affect the inference performance.
    # TODO(Superjomn) add an IR pass to remove 1-scale op.
    with program_guard(main_program):
        uniq_target_vars = []
F
flame 已提交
1082
        for i, var in enumerate(target_vars):
1083
            if isinstance(var, Variable):
F
flame 已提交
1084 1085 1086
                var = layers.scale(
                    var, 1., name="save_infer_model/scale_{}".format(i))
            uniq_target_vars.append(var)
1087
        target_vars = uniq_target_vars
F
flame 已提交
1088
    target_var_name_list = [var.name for var in target_vars]
1089

1090
    # when a pserver and a trainer running on the same machine, mkdir may conflict
L
lujun 已提交
1091
    save_dirname = dirname
1092
    try:
L
lujun 已提交
1093 1094
        save_dirname = os.path.normpath(dirname)
        os.makedirs(save_dirname)
1095 1096 1097 1098
    except OSError as e:
        if e.errno != errno.EEXIST:
            raise

X
Xin Pan 已提交
1099 1100 1101 1102
    if model_filename is not None:
        model_basename = os.path.basename(model_filename)
    else:
        model_basename = "__model__"
L
lujun 已提交
1103
    model_basename = os.path.join(save_dirname, model_basename)
1104

X
Xin Pan 已提交
1105 1106 1107 1108
    # When export_for_deployment is true, we modify the program online so that
    # it can only be loaded for inference directly. If it's false, the whole
    # original program and related meta are saved so that future usage can be
    # more flexible.
1109 1110 1111

    origin_program = main_program.clone()

X
Xin Pan 已提交
1112
    if export_for_deployment:
X
Xin Pan 已提交
1113 1114
        main_program = main_program.clone()
        global_block = main_program.global_block()
1115
        need_to_remove_op_index = []
X
Xin Pan 已提交
1116 1117 1118
        for i, op in enumerate(global_block.ops):
            op.desc.set_is_target(False)
            if op.type == "feed" or op.type == "fetch":
1119 1120 1121 1122 1123
                need_to_remove_op_index.append(i)

        for index in need_to_remove_op_index[::-1]:
            global_block._remove_op(index)

X
Xin Pan 已提交
1124
        main_program.desc.flush()
X
Xin Pan 已提交
1125

1126 1127
        main_program = main_program._prune_with_input(
            feeded_var_names=feeded_var_names, targets=target_vars)
X
Xin Pan 已提交
1128
        main_program = main_program._inference_optimize(prune_read_op=True)
X
Xin Pan 已提交
1129 1130
        fetch_var_names = [v.name for v in target_vars]

X
Xin Pan 已提交
1131 1132 1133
        prepend_feed_ops(main_program, feeded_var_names)
        append_fetch_ops(main_program, fetch_var_names)

1134 1135
        main_program.desc._set_version()
        paddle.fluid.core.save_op_compatible_info(main_program.desc)
X
Xin Pan 已提交
1136 1137
        with open(model_basename, "wb") as f:
            f.write(main_program.desc.serialize_to_string())
X
Xin Pan 已提交
1138 1139 1140
    else:
        # TODO(panyx0718): Save more information so that it can also be used
        # for training and more flexible post-processing.
X
Xin Pan 已提交
1141 1142
        with open(model_basename + ".main_program", "wb") as f:
            f.write(main_program.desc.serialize_to_string())
T
tangwei12 已提交
1143

T
tangwei12 已提交
1144 1145 1146 1147 1148 1149
    if program_only:
        warnings.warn(
            "save_inference_model specified the param `program_only` to True, It will not save params of Program."
        )
        return target_var_name_list

1150 1151
    main_program._copy_dist_param_info_from(origin_program)

X
fix  
Xin Pan 已提交
1152 1153
    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1154

L
lujun 已提交
1155
    save_persistables(executor, save_dirname, main_program, params_filename)
F
flame 已提交
1156
    return target_var_name_list
X
fix  
Xin Pan 已提交
1157

1158

1159 1160 1161
def load_inference_model(dirname,
                         executor,
                         model_filename=None,
T
tangwei12 已提交
1162 1163
                         params_filename=None,
                         pserver_endpoints=None):
1164
    """
1165 1166 1167
    Load the inference model from a given directory. By this API, you can get the model
    structure(Inference Program) and model parameters. If you just want to load
    parameters of the pre-trained model, please use the :ref:`api_fluid_io_load_params` API.
1168
    You can refer to :ref:`api_guide_model_save_reader_en` for more details.
1169

F
fengjiayi 已提交
1170
    Args:
1171
        dirname(str): The given directory path.
F
fengjiayi 已提交
1172
        executor(Executor): The executor to run for loading inference model.
1173 1174
                            See :ref:`api_guide_executor_en` for more details about it.
        model_filename(str, optional): The name of file to load the inference program.
1175
                                  If it is None, the default filename
1176 1177 1178
                                  ``__model__`` will be used.
                                  Default: ``None``.
        params_filename(str, optional): The name of file to load all parameters.
1179 1180 1181
                                   It is only used for the case that all
                                   parameters were saved in a single binary
                                   file. If parameters were saved in separate
1182 1183 1184 1185 1186 1187
                                   files, set it as ``None``.
                                   Default: ``None``.

        pserver_endpoints(list, optional): It is only needed by the distributed inference.
                                    If using a distributed look up table during the training,
                                    this table is also needed by the inference process. Its value is
1188
                                    a list of pserver endpoints.
F
fengjiayi 已提交
1189 1190

    Returns:
1191
        list: The return of this API is a list with three elements:
1192
        (program, feed_target_names, fetch_targets). The `program` is a
1193 1194 1195 1196 1197
        ``Program`` (refer to :ref:`api_guide_Program_en`), which is used for inference.
        The `feed_target_names` is a list of ``str``, which contains names of variables
        that need to feed data in the inference program. The `fetch_targets` is a list of
        ``Variable`` (refer to :ref:`api_guide_Program_en`). It contains variables from which
        we can get inference results.
F
fengjiayi 已提交
1198 1199 1200 1201 1202 1203 1204

    Raises:
        ValueError: If `dirname` is not a existing directory.

    Examples:
        .. code-block:: python

1205 1206
            import paddle.fluid as fluid
            import numpy as np
1207 1208

            # Build the model
1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
            main_prog = fluid.Program()
            startup_prog = fluid.Program()
            with fluid.program_guard(main_prog, startup_prog):
                data = fluid.layers.data(name="img", shape=[64, 784], append_batch_size=False)
                w = fluid.layers.create_parameter(shape=[784, 200], dtype='float32')
                b = fluid.layers.create_parameter(shape=[200], dtype='float32')
                hidden_w = fluid.layers.matmul(x=data, y=w)
                hidden_b = fluid.layers.elementwise_add(hidden_w, b)
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)
            exe.run(startup_prog)
1220 1221

            # Save the inference model
F
fengjiayi 已提交
1222
            path = "./infer_model"
1223 1224
            fluid.io.save_inference_model(dirname=path, feeded_var_names=['img'],
                         target_vars=[hidden_b], executor=exe, main_program=main_prog)
1225 1226 1227

            # Demo one. Not need to set the distributed look up table, because the
            # training doesn't use a distributed look up table.
1228 1229
            [inference_program, feed_target_names, fetch_targets] = (
                fluid.io.load_inference_model(dirname=path, executor=exe))
1230
            tensor_img = np.array(np.random.random((1, 64, 784)), dtype=np.float32)
F
fengjiayi 已提交
1231 1232 1233 1234
            results = exe.run(inference_program,
                          feed={feed_target_names[0]: tensor_img},
                          fetch_list=fetch_targets)

1235 1236 1237
            # Demo two. If the training uses a distributed look up table, the pserver
            # endpoints list should be supported when loading the inference model.
            # The below is just an example.
1238
            endpoints = ["127.0.0.1:2023","127.0.0.1:2024"]
1239
            [dist_inference_program, dist_feed_target_names, dist_fetch_targets] = (
1240 1241
                fluid.io.load_inference_model(dirname=path,
                                              executor=exe,
1242
                                              pserver_endpoints=endpoints))
1243

1244
            # In this example, the inference program was saved in the file
1245
            # "./infer_model/__model__" and parameters were saved in
1246 1247 1248 1249
            # separate files under the directory "./infer_model".
            # By the inference program, feed_target_names and
            # fetch_targets, we can use an executor to run the inference
            # program for getting the inference result.
1250
    """
L
lujun 已提交
1251 1252
    load_dirname = os.path.normpath(dirname)
    if not os.path.isdir(load_dirname):
1253 1254
        raise ValueError("There is no directory named '%s'", dirname)

1255 1256
    if model_filename is not None:
        model_filename = os.path.basename(model_filename)
1257
    else:
1258
        model_filename = "__model__"
L
lujun 已提交
1259
    model_filename = os.path.join(load_dirname, model_filename)
1260 1261 1262

    if params_filename is not None:
        params_filename = os.path.basename(params_filename)
1263

1264
    with open(model_filename, "rb") as f:
1265 1266
        program_desc_str = f.read()

1267
    program = Program.parse_from_string(program_desc_str)
X
Xin Pan 已提交
1268
    if not core._is_program_version_supported(program._version()):
X
version  
Xin Pan 已提交
1269 1270 1271
        raise ValueError("Unsupported program version: %d\n" %
                         program._version())
    # Binary data also need versioning.
L
lujun 已提交
1272
    load_persistables(executor, load_dirname, program, params_filename)
1273

T
tangwei12 已提交
1274
    if pserver_endpoints:
T
tangwei12 已提交
1275
        program = _endpoints_replacement(program, pserver_endpoints)
T
tangwei12 已提交
1276

1277 1278
    feed_target_names = program.desc.get_feed_target_names()
    fetch_target_names = program.desc.get_fetch_target_names()
1279 1280 1281 1282 1283
    fetch_targets = [
        program.global_block().var(name) for name in fetch_target_names
    ]

    return [program, feed_target_names, fetch_targets]
X
xuwei06 已提交
1284 1285


T
tangwei12 已提交
1286 1287 1288
def _endpoints_replacement(program, endpoints):
    ENDPOINT_MAP = "epmap"
    for op in program.global_block().ops:
T
tangwei12 已提交
1289 1290
        if op.has_attr(ENDPOINT_MAP):
            op.set_attr(ENDPOINT_MAP, endpoints)
T
fix  
tangwei12 已提交
1291
    program._sync_with_cpp()
T
tangwei12 已提交
1292
    return program
T
tangwei12 已提交
1293 1294


X
xuwei06 已提交
1295 1296
def get_parameter_value(para, executor):
    """
F
fengjiayi 已提交
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307
    Get the LoDTensor value of the given parameter.

    Args:
        para(Parameter): The parameter to get value from.
        executor(Executor): The executor to run for retrieving the value.

    Returns:
        numpy.array: The given parameter's values.

    Raises:
        AssertionError: If the `para` is not an instance of Parameter.
X
xuwei06 已提交
1308

F
fengjiayi 已提交
1309 1310
    Examples:
        .. code-block:: python
X
xuwei06 已提交
1311

1312
            import paddle.fluid as fluid
F
fengjiayi 已提交
1313 1314 1315
            exe = fluid.Executor(fluid.CPUPlace())
            param = fluid.default_main_program().global_block().var('fc.w')
            p = fluid.io.get_parameter_value(param, exe)
1316

X
xuwei06 已提交
1317
    """
X
xuwei06 已提交
1318 1319
    assert is_parameter(para)

X
xuwei06 已提交
1320 1321 1322 1323 1324 1325 1326 1327
    get_program = Program()
    block = get_program.global_block()
    new_var = _clone_var_in_block_(block, para)
    return executor.run(get_program, feed={}, fetch_list=[new_var])[0]


def get_parameter_value_by_name(name, executor, program=None):
    """
F
fengjiayi 已提交
1328
    Get the LoDTensor value of a certain parameter by its name.
X
xuwei06 已提交
1329

F
fengjiayi 已提交
1330 1331 1332 1333 1334 1335 1336
    Args:
        name(str): The parameter's name.
        executor(Executor): The executor to run for retrieving the value.
        program(Program | None): The program where to find the parameter.
                               If it's set to be None, the function will
                               try to find the parameter in the default
                               main program.
X
xuwei06 已提交
1337

F
fengjiayi 已提交
1338 1339
    Returns:
        numpy.array: The parameter's values.
1340

F
fengjiayi 已提交
1341 1342 1343 1344 1345
    Raises:
        TypeError: If given `name` is not an instance of basestring.
        TypeError: If the parameter with the given name doesn't exist.
        AssertionError: If there is a varibale named `name` in the
                        given program but it is not a Parameter.
1346

F
fengjiayi 已提交
1347 1348 1349
    Examples:
        .. code-block:: python

1350
            import paddle.fluid as fluid
F
fengjiayi 已提交
1351 1352
            exe = fluid.Executor(fluid.CPUPlace())
            p = fluid.io.get_parameter_value('fc.w', exe)
X
xuwei06 已提交
1353 1354
    """
    if program is None:
Y
Yu Yang 已提交
1355
        program = default_main_program()
X
xuwei06 已提交
1356 1357
    var = program.global_block().var(name)
    return get_parameter_value(var, executor)
1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434


def _save_persistable_nodes(executor, dirname, graph):
    """
    Save persistable nodes to the given directory by the executor.

    Args:
        executor(Executor): The executor to run for saving node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be saved.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []
    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        var_list.append(var)
    save_vars(executor=executor, dirname=dirname, vars=var_list)


def _load_persistable_nodes(executor, dirname, graph):
    """
    Load persistable node values from the given directory by the executor.

    Args:
        executor(Executor): The executor to run for loading node values.
        dirname(str): The directory path.
        graph(IrGraph): All the required persistable nodes in the graph will be loaded.
    """
    persistable_node_names = set()
    persistable_nodes = []
    all_persistable_nodes = graph.all_persistable_nodes()
    for node in all_persistable_nodes:
        name = cpt.to_text(node.name())
        if name not in persistable_node_names:
            persistable_node_names.add(name)
            persistable_nodes.append(node)
    program = Program()
    var_list = []

    def _exist(var):
        return os.path.exists(os.path.join(dirname, var.name))

    for node in persistable_nodes:
        var_desc = node.var()
        if var_desc.type() == core.VarDesc.VarType.RAW or \
                var_desc.type() == core.VarDesc.VarType.READER:
            continue
        var = program.global_block().create_var(
            name=var_desc.name(),
            shape=var_desc.shape(),
            dtype=var_desc.dtype(),
            type=var_desc.type(),
            lod_level=var_desc.lod_level(),
            persistable=var_desc.persistable())
        if _exist(var):
            var_list.append(var)
        else:
            _logger.warn("Cannot find the var %s!!!" % (node.name()))
    load_vars(executor=executor, dirname=dirname, vars=var_list)
H
hong 已提交
1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527


def save(program, model_path):
    """
    This function save parameters, optimizer information and network description to  model_path.

    The parameters contains all the trainable Variable, will save to a file with suffix ".pdparams".
    The optimizer information contains all the variable used by optimizer. For Adam optimizer, contains beta1, beta2, momentum etc. All the information will save to a file with suffix ".pdopt". (If the optimizer have no variable need to save (like SGD), the fill will not generated).
    The network description is the description of the program. It's only used for deployment. The description  will save to a file with a suffix ".pdmodel".
    
    Args:
        program(Program) : The program to saved.
        model_path(str): the file prefix to save the program. The format is "dirname/file_prefix". If file_prefix is empty str. A exception will be raised

    Returns:
        None

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

    """

    base_name = os.path.basename(model_path)
    assert base_name != "", \
            "model_path MUST be format of dirname/filename [dirname\\filename in Window], Now filename is empty str"

    parameter_list = list(filter(is_parameter, program.list_vars()))
    paddle.fluid.core._save_static_dict(model_path + ".pdparams",
                                        parameter_list, global_scope())

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    paddle.fluid.core._save_static_dict(model_path + ".pdopt",
                                        optimizer_var_list, global_scope())

    main_program = program.clone()
    program.desc.flush()
    main_program.desc._set_version()
    paddle.fluid.core.save_op_compatible_info(program.desc)

    with open(model_path + ".pdmodel", "wb") as f:
        f.write(program.desc.serialize_to_string())


def load(program, model_path):
    """
    This function filter out parameters and optimizer information from program, and then get corresponding value from file.
    An exception will throw if shape or dtype of the parameters is not match between program and loaded file.

    NOTICE: This function MUST called after run start_up_program

    Args: 
        program: The program to be load
        model_path: The file prefix store the program

    Returns:
        None
        
     Examples:
        .. code-block:: python

            import paddle.fluid as fluid

            prog = fluid.default_main_program()
            fluid.save( prog, "./temp")

            fluid.load( prog, "./temp")

    """

    parameter_file_name = model_path + ".pdparams"
    assert os.path.exists(parameter_file_name), \
            "Parameter file [{}] not exits".format( parameter_file_name)

    parameter_list = list(filter(is_parameter, program.list_vars()))
    paddle.fluid.core._load_static_dict(parameter_file_name, parameter_list,
                                        global_scope())

    optimizer_var_list = list(
        filter(is_belong_to_optimizer, program.list_vars()))

    if len(optimizer_var_list) > 0:
        opt_file_name = model_path + ".pdopt"
        assert os.path.exists(opt_file_name), \
                "Optimizer file [{}] not exits".format( opt_file_name)
        paddle.fluid.core._load_static_dict(opt_file_name, optimizer_var_list,
                                            global_scope())