refactorization.html 33.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86


<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
  <meta charset="utf-8">
  
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  
  <title>Design Doc: Refactorization Overview &mdash; PaddlePaddle  documentation</title>
  

  
  

  

  
  
    

  

  
  
    <link rel="stylesheet" href="../_static/css/theme.css" type="text/css" />
  

  
  
        <link rel="index" title="Index"
              href="../genindex.html"/>
        <link rel="search" title="Search" href="../search.html"/>
    <link rel="top" title="PaddlePaddle  documentation" href="../index.html"/> 

  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
  <link rel="stylesheet" href="../_static/css/override.css" type="text/css" />
  <script>
  var _hmt = _hmt || [];
  (function() {
    var hm = document.createElement("script");
    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
    var s = document.getElementsByTagName("script")[0]; 
    s.parentNode.insertBefore(hm, s);
  })();
  </script>

  

  
  <script src="../_static/js/modernizr.min.js"></script>

</head>

<body class="wy-body-for-nav" role="document">

  
  <header class="site-header">
    <div class="site-logo">
      <a href="/"><img src="../_static/images/PP_w.png"></a>
    </div>
    <div class="site-nav-links">
      <div class="site-menu">
        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Fork me on Github</a>
        <div class="language-switcher dropdown">
          <a type="button" data-toggle="dropdown">
            <span>English</span>
            <i class="fa fa-angle-up"></i>
            <i class="fa fa-angle-down"></i>
          </a>
          <ul class="dropdown-menu">
            <li><a href="/doc_cn">中文</a></li>
            <li><a href="/doc">English</a></li>
          </ul>
        </div>
        <ul class="site-page-links">
          <li><a href="/">Home</a></li>
        </ul>
      </div>
      <div class="doc-module">
        
        <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a></li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a></li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a></li>
87
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_en.html">MOBILE</a></li>
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
</ul>

        
<div role="search">
  <form id="rtd-search-form" class="wy-form" action="../search.html" method="get">
    <input type="text" name="q" placeholder="Search docs" />
    <input type="hidden" name="check_keywords" value="yes" />
    <input type="hidden" name="area" value="default" />
  </form>
</div>        
      </div>
    </div>
  </header>
  
  <div class="main-content-wrap">

    
    <nav class="doc-menu-vertical" role="navigation">
        
          
          <ul>
<li class="toctree-l1"><a class="reference internal" href="../getstarted/index_en.html">GET STARTED</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../getstarted/build_and_install/index_en.html">Install and Build</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/docker_install_en.html">PaddlePaddle in Docker Containers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../getstarted/build_and_install/build_from_source_en.html">Installing from Sources</a></li>
</ul>
</li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../howto/index_en.html">HOW TO</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cmd_parameter/index_en.html">Set Command-line Parameters</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/use_case_en.html">Use Case</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/arguments_en.html">Argument Outline</a></li>
<li class="toctree-l3"><a class="reference internal" href="../howto/usage/cmd_parameter/detail_introduction_en.html">Detail Description</a></li>
</ul>
</li>
124
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/cluster/cluster_train_en.html">PaddlePaddle Distributed Training</a></li>
125 126 127 128
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_en.html">Paddle On Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/usage/k8s/k8s_aws_en.html">Distributed PaddlePaddle Training on AWS with Kubernetes</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/build_en.html">Build PaddlePaddle from Source Code and Run Unit Test</a></li>
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/new_layer_en.html">Write New Layers</a></li>
129
<li class="toctree-l2"><a class="reference internal" href="../howto/dev/contribute_to_paddle_en.html">Contribute Code</a></li>
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
<li class="toctree-l2"><a class="reference internal" href="../howto/deep_model/rnn/index_en.html">RNN Models</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../howto/deep_model/rnn/rnn_config_en.html">RNN Configuration</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../howto/optimization/gpu_profiling_en.html">Tune GPU Performance</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="../api/index_en.html">API</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/model_configs.html">Model Configuration</a><ul>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/activation.html">Activation</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/layer.html">Layers</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/evaluators.html">Evaluators</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/optimizer.html">Optimizer</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/pooling.html">Pooling</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/networks.html">Networks</a></li>
<li class="toctree-l3"><a class="reference internal" href="../api/v2/config/attr.html">Parameter Attribute</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/data.html">Data Reader Interface and DataSets</a></li>
<li class="toctree-l2"><a class="reference internal" href="../api/v2/run_logic.html">Training and Inference</a></li>
</ul>
</li>
152 153 154 155 156
<li class="toctree-l1"><a class="reference internal" href="../mobile/index_en.html">MOBILE</a><ul>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_android_en.html">Build PaddlePaddle for Android</a></li>
<li class="toctree-l2"><a class="reference internal" href="../mobile/cross_compiling_for_raspberry_en.html">Build PaddlePaddle for Raspberry Pi</a></li>
</ul>
</li>
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
</ul>

        
    </nav>
    
    <section class="doc-content-wrap">

      

 







<div role="navigation" aria-label="breadcrumbs navigation">
  <ul class="wy-breadcrumbs">
      
    <li>Design Doc: Refactorization Overview</li>
  </ul>
</div>
      
      <div class="wy-nav-content" id="doc-content">
        <div class="rst-content">
          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
           <div itemprop="articleBody">
            
  <div class="section" id="design-doc-refactorization-overview">
<span id="design-doc-refactorization-overview"></span><h1>Design Doc: Refactorization Overview<a class="headerlink" href="#design-doc-refactorization-overview" title="Permalink to this headline"></a></h1>
188
<p>The goals of refactoring include:</p>
189
<ol class="simple">
190 191 192 193
<li>Making it easy for external contributors to write new elementary computation operations.</li>
<li>Making the codebase clean and readable.</li>
<li>Designing a new computation representation &#8211; a computation graph of operators and variables.</li>
<li>Implementing auto-scalability and auto fault recoverable distributed computing with the help of computation graphs.</li>
194 195 196 197
</ol>
<div class="section" id="computation-graphs">
<span id="computation-graphs"></span><h2>Computation Graphs<a class="headerlink" href="#computation-graphs" title="Permalink to this headline"></a></h2>
<ol class="simple">
198 199 200
<li>PaddlePaddle represents the computation, training and inference of Deep Learning models, by computation graphs.</li>
<li>Please refer to <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/graph.md">computation graphs</a> for a concrete example.</li>
<li>Users write Python programs to describe the graphs and run them (locally or remotely).</li>
201
<li>A graph is composed of <em>variables</em> and <em>operators</em>.</li>
202 203
<li>The description of graphs must be serializable/deserializable, so that:<ol>
<li>It can be sent to the cloud for distributed execution, and</li>
204
<li>It can be sent to clients for mobile or enterprise deployment.</li>
205 206
</ol>
</li>
207 208
<li>The Python program does two things<ol>
<li><em>Compilation</em> runs a Python program to generate a protobuf message representation of the graph and send it to<ol>
209 210 211 212 213
<li>the C++ library <code class="docutils literal"><span class="pre">libpaddle.so</span></code> for local execution,</li>
<li>the master process of a distributed training job for training, or</li>
<li>the server process of a Kubernetes serving job for distributed serving.</li>
</ol>
</li>
214
<li><em>Execution</em> executes the graph by constructing instances of class <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24"><code class="docutils literal"><span class="pre">Variable</span></code></a> and <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L70"><code class="docutils literal"><span class="pre">OperatorBase</span></code></a>, according to the protobuf message.</li>
215 216 217 218
</ol>
</li>
</ol>
</div>
219 220
<div class="section" id="description-and-realization-of-computation-graph">
<span id="description-and-realization-of-computation-graph"></span><h2>Description and Realization of Computation Graph<a class="headerlink" href="#description-and-realization-of-computation-graph" title="Permalink to this headline"></a></h2>
221
<p>At compile time, the Python program generates a protobuf message representation of the graph, or a description of the graph.</p>
222
<p>At runtime, the C++ program realizes the graph and runs it.</p>
223 224 225 226 227
<p>| | Representation (protobuf messages) | Realization (C++ class objects) |
|&#8212;|&#8212;|&#8212;|
|Data|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L107">VarDesc</a>|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h#L24">Variable</a>|
|Operation|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L35">OpDesc</a>|<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L64">Operator</a>|
|Block|BlockDesc|Block|</p>
228
<p>The word <em>graph</em> is interchangeable with <em>block</em> in this document.  A graph consists of computation steps and local variables similar to a C++/Java program block, or a pair of parentheses(<code class="docutils literal"><span class="pre">{</span></code> and <code class="docutils literal"><span class="pre">}</span></code>).</p>
229 230 231 232
</div>
<div class="section" id="compilation-and-execution">
<span id="compilation-and-execution"></span><h2>Compilation and Execution<a class="headerlink" href="#compilation-and-execution" title="Permalink to this headline"></a></h2>
<ol class="simple">
233
<li>Run a Python program to describe the graph.  In particular, the Python application program does the following:<ol>
234 235 236 237 238 239
<li>Create <code class="docutils literal"><span class="pre">VarDesc</span></code> to represent local/intermediate variables,</li>
<li>Create operators and set attributes,</li>
<li>Validate attribute values,</li>
<li>Infer the type and the shape of variables,</li>
<li>Plan memory-reuse for variables,</li>
<li>Generate the backward graph</li>
240 241
<li>Add optimization operators to the computation graph.</li>
<li>Optionally, split the graph for distributed training.</li>
242 243
</ol>
</li>
244
<li>The invocation of <code class="docutils literal"><span class="pre">train</span></code> or <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/inference.py#L108"><code class="docutils literal"><span class="pre">infer</span></code></a> methods in the Python program does the following:<ol>
245
<li>Create a new Scope instance in the <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/scope.md">scope hierarchy</a> for each run of a block,<ol>
246 247 248 249
<li>realize local variables defined in the BlockDesc message in the new scope,</li>
<li>a scope is similar to the stack frame in programming languages,</li>
</ol>
</li>
250
<li>Create an instance of class <code class="docutils literal"><span class="pre">Block</span></code>, in which,<ol>
251 252 253
<li>realize operators in the BlockDesc message,</li>
</ol>
</li>
254
<li>Run the Block by calling<ol>
255 256 257 258 259 260 261 262 263 264 265 266 267
<li><code class="docutils literal"><span class="pre">Block::Eval(vector&lt;Variable&gt;*</span> <span class="pre">targets)</span></code> for forward and backward computations, or</li>
<li><code class="docutils literal"><span class="pre">Block::Eval(vector&lt;Operator&gt;*</span> <span class="pre">targets)</span></code> for optimization.</li>
</ol>
</li>
</ol>
</li>
</ol>
</div>
<div class="section" id="intermediate-representation-ir">
<span id="intermediate-representation-ir"></span><h2>Intermediate Representation (IR)<a class="headerlink" href="#intermediate-representation-ir" title="Permalink to this headline"></a></h2>
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time -&gt; IR -&gt; Runtime
</pre></div>
</div>
268 269
<div class="section" id="benefits-of-ir">
<span id="benefits-of-ir"></span><h3>Benefits of IR<a class="headerlink" href="#benefits-of-ir" title="Permalink to this headline"></a></h3>
270 271 272 273 274 275
<ul>
<li><p class="first">Optimization</p>
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time -&gt; IR -&gt; Optimized IR -&gt; Runtime
</pre></div>
</div>
</li>
276
<li><p class="first">Automatically send partitioned IR to different nodes.</p>
277
<ul>
278
<li><p class="first">Automatic Data Parallelism</p>
279 280 281 282 283 284 285 286 287
<div class="highlight-text"><div class="highlight"><pre><span></span>Compile Time
|-&gt; Single GPU IR
    |-&gt; [trainer-IR-0, trainer-IR-1, pserver-IR]
        |-&gt; Node-0 (runs trainer-IR-0)
        |-&gt; Node-1 (runs trainer-IR-1)
        |-&gt; Node-2 (runs pserver-IR)
</pre></div>
</div>
</li>
288
<li><p class="first">Automatic Model Parallelism (planned for future)</p>
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
</li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<hr class="docutils" />
<div class="section" id="operator-opwithkernel-opkernel">
<span id="operator-opwithkernel-opkernel"></span><h1>Operator/OpWithKernel/OpKernel<a class="headerlink" href="#operator-opwithkernel-opkernel" title="Permalink to this headline"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot" /></p>
</div>
<hr class="docutils" />
<div class="section" id="operator">
<span id="operator"></span><h1>Operator<a class="headerlink" href="#operator" title="Permalink to this headline"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot" /></p>
<ul class="simple">
306
<li><code class="docutils literal"><span class="pre">Operator</span></code> is the fundamental building block of the user interface.<ul>
307 308
<li>Operator stores input/output variable names and attributes.</li>
<li>The <code class="docutils literal"><span class="pre">InferShape</span></code> interface is used to infer the shape of the output variables based on the shapes of the input variables.</li>
309
<li>Use <code class="docutils literal"><span class="pre">Run</span></code> to compute the <code class="docutils literal"><span class="pre">output</span></code> variables from the <code class="docutils literal"><span class="pre">input</span></code> variables.</li>
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="opwithkernel-kernel">
<span id="opwithkernel-kernel"></span><h1>OpWithKernel/Kernel<a class="headerlink" href="#opwithkernel-kernel" title="Permalink to this headline"></a></h1>
<p><img alt="class_diagram" src="http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot" /></p>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">OpWithKernel</span></code> inherits <code class="docutils literal"><span class="pre">Operator</span></code>.</li>
<li><code class="docutils literal"><span class="pre">OpWithKernel</span></code> contains a Kernel map.<ul>
<li><code class="docutils literal"><span class="pre">OpWithKernel::Run</span></code> get device&#8217;s kernel, and invoke <code class="docutils literal"><span class="pre">OpKernel::Compute</span></code>.</li>
<li><code class="docutils literal"><span class="pre">OpKernelKey</span></code> is the map key. Only device place now, but may be data type later.</li>
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="why-separate-kernel-and-operator">
<span id="why-separate-kernel-and-operator"></span><h1>Why separate Kernel and Operator<a class="headerlink" href="#why-separate-kernel-and-operator" title="Permalink to this headline"></a></h1>
<ul class="simple">
<li>Separate GPU and CPU code.<ul>
332
<li>Make Paddle capable of running without GPU.</li>
333 334
</ul>
</li>
335 336
<li>Make one operator (which is a user interface) and create many implementations.<ul>
<li>For example, same multiplication op can have different implementations kernels such as FP16 kernel, FP32 kernel, MKL, eigen kernel.</li>
337 338 339 340 341 342 343 344 345 346
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="libraries-for-kernel-development">
<span id="libraries-for-kernel-development"></span><h1>Libraries for Kernel development<a class="headerlink" href="#libraries-for-kernel-development" title="Permalink to this headline"></a></h1>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">Eigen::Tensor</span></code> contains basic math and element-wise functions.<ul>
<li>Note that <code class="docutils literal"><span class="pre">Eigen::Tensor</span></code> has broadcast implementation.</li>
347
<li>Limit the number of <code class="docutils literal"><span class="pre">tensor.device(dev)</span> <span class="pre">=</span></code> in your code.</li>
348 349
</ul>
</li>
350 351
<li><code class="docutils literal"><span class="pre">thrust::transform</span></code> and <code class="docutils literal"><span class="pre">std::transform</span></code>.<ul>
<li><code class="docutils literal"><span class="pre">thrust</span></code> has the same API as C++ standard library. Using <code class="docutils literal"><span class="pre">transform</span></code>, one can quickly implement customized element-wise kernels.</li>
352
<li><code class="docutils literal"><span class="pre">thrust</span></code>, in addition, supports more complex APIs, like <code class="docutils literal"><span class="pre">scan</span></code>, <code class="docutils literal"><span class="pre">reduce</span></code>, <code class="docutils literal"><span class="pre">reduce_by_key</span></code>.</li>
353 354 355
</ul>
</li>
<li>Hand-writing <code class="docutils literal"><span class="pre">GPUKernel</span></code> and <code class="docutils literal"><span class="pre">CPU</span></code> code<ul>
356
<li>Do not write in header (<code class="docutils literal"><span class="pre">.h</span></code>) files. CPU Kernel should be in cpp source (<code class="docutils literal"><span class="pre">.cc</span></code>) and GPU kernels should be in cuda (<code class="docutils literal"><span class="pre">.cu</span></code>) files. (GCC cannot compile GPU code.)</li>
357 358 359 360 361
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
362 363
<div class="section" id="operator-registration">
<span id="operator-registration"></span><h1>Operator Registration<a class="headerlink" href="#operator-registration" title="Permalink to this headline"></a></h1>
364 365
<div class="section" id="why-is-registration-necessary">
<span id="why-is-registration-necessary"></span><h2>Why is registration necessary?<a class="headerlink" href="#why-is-registration-necessary" title="Permalink to this headline"></a></h2>
366 367
<p>We need a method to build mappings between Op type names and Op classes.</p>
</div>
368 369 370
<div class="section" id="how-is-registration-implemented">
<span id="how-is-registration-implemented"></span><h2>How is registration implemented?<a class="headerlink" href="#how-is-registration-implemented" title="Permalink to this headline"></a></h2>
<p>Maintaining a map, whose key is the type name and the value is the corresponding Op constructor.</p>
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
</div>
</div>
<hr class="docutils" />
<div class="section" id="the-registry-map">
<span id="the-registry-map"></span><h1>The Registry Map<a class="headerlink" href="#the-registry-map" title="Permalink to this headline"></a></h1>
<div class="section" id="opinfomap">
<span id="opinfomap"></span><h2><code class="docutils literal"><span class="pre">OpInfoMap</span></code><a class="headerlink" href="#opinfomap" title="Permalink to this headline"></a></h2>
<p><code class="docutils literal"><span class="pre">op_type(string)</span></code> -&gt; <code class="docutils literal"><span class="pre">OpInfo</span></code></p>
<p><code class="docutils literal"><span class="pre">OpInfo</span></code>:</p>
<ul class="simple">
<li><strong><code class="docutils literal"><span class="pre">creator</span></code></strong>: The Op constructor.</li>
<li><strong><code class="docutils literal"><span class="pre">grad_op_type</span></code></strong>: The type of the gradient Op.</li>
<li><strong><code class="docutils literal"><span class="pre">proto</span></code></strong>: The Op&#8217;s Protobuf, including inputs, outputs and required attributes.</li>
<li><strong><code class="docutils literal"><span class="pre">checker</span></code></strong>: Used to check attributes.</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="related-concepts">
<span id="related-concepts"></span><h1>Related Concepts<a class="headerlink" href="#related-concepts" title="Permalink to this headline"></a></h1>
<div class="section" id="op-maker">
<span id="op-maker"></span><h2>Op_Maker<a class="headerlink" href="#op-maker" title="Permalink to this headline"></a></h2>
393
<p>It&#8217;s constructor takes <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code>. They are completed during Op_Maker&#8217;s construction. (<a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37">ScaleOpMaker</a>)</p>
394 395 396 397 398 399 400 401 402 403
</div>
<div class="section" id="register-macros">
<span id="register-macros"></span><h2>Register Macros<a class="headerlink" href="#register-macros" title="Permalink to this headline"></a></h2>
<div class="highlight-cpp"><div class="highlight"><pre><span></span><span class="n">REGISTER_OP</span><span class="p">(</span><span class="n">op_type</span><span class="p">,</span> <span class="n">op_class</span><span class="p">,</span> <span class="n">op_maker_class</span><span class="p">,</span> <span class="n">grad_op_type</span><span class="p">,</span> <span class="n">grad_op_class</span><span class="p">)</span>
<span class="n">REGISTER_OP_WITHOUT_GRADIENT</span><span class="p">(</span><span class="n">op_type</span><span class="p">,</span> <span class="n">op_class</span><span class="p">,</span> <span class="n">op_maker_class</span><span class="p">)</span>
</pre></div>
</div>
</div>
</div>
<hr class="docutils" />
404 405
<div class="section" id="registration-process">
<span id="registration-process"></span><h1>Registration Process<a class="headerlink" href="#registration-process" title="Permalink to this headline"></a></h1>
406
<ol class="simple">
407 408 409
<li>Write an Op class and its gradient Op class, if required.</li>
<li>Write an Op maker class. In the constructor of this class, describe the inputs, outputs and attributes of the operator.</li>
<li>Invoke the macro <code class="docutils literal"><span class="pre">REGISTER_OP</span></code>. This macro will<ol>
410
<li>Call maker class to complete <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code></li>
411
<li>Using the completed <code class="docutils literal"><span class="pre">proto</span></code> and <code class="docutils literal"><span class="pre">checker</span></code>, it will add a new key-value pair to the <code class="docutils literal"><span class="pre">OpInfoMap</span></code></li>
412 413 414 415 416 417 418 419 420 421
</ol>
</li>
</ol>
</div>
<hr class="docutils" />
<div class="section" id="backward-module-1-2">
<span id="backward-module-1-2"></span><h1>Backward Module (1/2)<a class="headerlink" href="#backward-module-1-2" title="Permalink to this headline"></a></h1>
<div class="section" id="create-backward-operator">
<span id="create-backward-operator"></span><h2>Create Backward Operator<a class="headerlink" href="#create-backward-operator" title="Permalink to this headline"></a></h2>
<ul class="simple">
422
<li>Mapping from forward Op to backward Op
423 424 425 426 427 428 429 430 431 432
<img alt="backward" src="https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png" /></li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="backward-module-2-2">
<span id="backward-module-2-2"></span><h1>Backward Module (2/2)<a class="headerlink" href="#backward-module-2-2" title="Permalink to this headline"></a></h1>
<div class="section" id="build-backward-network">
<span id="build-backward-network"></span><h2>Build Backward Network<a class="headerlink" href="#build-backward-network" title="Permalink to this headline"></a></h2>
<ul class="simple">
433 434
<li><strong>Input</strong>: a graph of forward operators</li>
<li><strong>Output</strong>: a graph of backward operators</li>
435 436 437 438
<li><strong>Corner cases in construction</strong><ul>
<li>Shared Variables =&gt; insert an <code class="docutils literal"><span class="pre">Add</span></code> operator to combine gradients</li>
<li>No Gradient =&gt; insert a <code class="docutils literal"><span class="pre">fill_zero_grad</span></code> operator</li>
<li>Recursive NetOp =&gt; call <code class="docutils literal"><span class="pre">Backward</span></code> recursively</li>
439
<li>RNN Op =&gt; recursively call <code class="docutils literal"><span class="pre">Backward</span></code> on stepnet</li>
440
<li>RNN Op =&gt; recursively call <code class="docutils literal"><span class="pre">Backward</span></code> on stepnet</li>
441 442 443 444 445 446 447 448 449 450 451
</ul>
</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="scope-variable-tensor">
<span id="scope-variable-tensor"></span><h1>Scope, Variable, Tensor<a class="headerlink" href="#scope-variable-tensor" title="Permalink to this headline"></a></h1>
<ul class="simple">
<li><code class="docutils literal"><span class="pre">Tensor</span></code> is an n-dimension array with type.<ul>
<li>Only dims and data pointers are stored in <code class="docutils literal"><span class="pre">Tensor</span></code>.</li>
452 453
<li>All operations on <code class="docutils literal"><span class="pre">Tensor</span></code> are written in <code class="docutils literal"><span class="pre">Operator</span></code> or global functions.</li>
<li>Variable length Tensor design <a class="reference external" href="https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/lod_tensor.md">LoDTensor</a></li>
454 455
</ul>
</li>
456
<li><code class="docutils literal"><span class="pre">Variable</span></code> instances are the inputs and the outputs of an operator, not just <code class="docutils literal"><span class="pre">Tensor</span></code>.<ul>
457
<li><code class="docutils literal"><span class="pre">step_scopes</span></code> in RNN is a variable and not a tensor.</li>
458 459
</ul>
</li>
460 461
<li><code class="docutils literal"><span class="pre">Scope</span></code> is where variables are stored.<ul>
<li>map&lt;string <code class="docutils literal"><span class="pre">var</span> <span class="pre">name</span></code>, Variable&gt;</li>
462
<li><code class="docutils literal"><span class="pre">Scope</span></code> has a hierarchical structure. The local scope can get variables from its parent scope.</li>
463 464 465 466 467 468 469
</ul>
</li>
</ul>
</div>
<hr class="docutils" />
<div class="section" id="block-in-design">
<span id="block-in-design"></span><h1>Block (in design)<a class="headerlink" href="#block-in-design" title="Permalink to this headline"></a></h1>
470 471
<div class="section" id="the-difference-between-original-rnnop-and-block">
<span id="the-difference-between-original-rnnop-and-block"></span><h2>the difference between original RNNOp and Block<a class="headerlink" href="#the-difference-between-original-rnnop-and-block" title="Permalink to this headline"></a></h2>
472
<ul class="simple">
473 474 475 476 477
<li>As an operator is more intuitive than <code class="docutils literal"><span class="pre">RNNOp</span></code>,</li>
<li>Offers a new interface <code class="docutils literal"><span class="pre">Eval(targets)</span></code> to deduce the minimal block to <code class="docutils literal"><span class="pre">Run</span></code>,</li>
<li>Fits the compile-time/ runtime separation design paradigm.<ul>
<li>During the compilation, <code class="docutils literal"><span class="pre">SymbolTable</span></code> stores <code class="docutils literal"><span class="pre">VarDesc</span></code>s and <code class="docutils literal"><span class="pre">OpDesc</span></code>s and serialize to a <code class="docutils literal"><span class="pre">BlockDesc</span></code></li>
<li>When graph executes, a Block with <code class="docutils literal"><span class="pre">BlockDesc</span></code> is passed. It then creates <code class="docutils literal"><span class="pre">Op</span></code> and <code class="docutils literal"><span class="pre">Var</span></code> instances and then invokes <code class="docutils literal"><span class="pre">Run</span></code>.</li>
478 479 480 481 482 483 484 485 486
</ul>
</li>
</ul>
</div>
</div>
<hr class="docutils" />
<div class="section" id="milestone">
<span id="milestone"></span><h1>Milestone<a class="headerlink" href="#milestone" title="Permalink to this headline"></a></h1>
<ul class="simple">
487 488 489
<li>Take Paddle/books as the main line, the requirement of the models motivates framework refactoring,</li>
<li>Model migration<ul>
<li>Framework development gives <strong>priority support</strong> to model migration, for example,<ul>
490 491 492 493
<li>the MNIST demo needs a Python interface,</li>
<li>the RNN models require the framework to support <code class="docutils literal"><span class="pre">LoDTensor</span></code>.</li>
</ul>
</li>
494 495 496
<li>Determine some timelines,</li>
<li>Frequently used Ops need to be migrated first,</li>
<li>Different models can be migrated in parallel.</li>
497 498
</ul>
</li>
499 500
<li>Improve the framework at the same time</li>
<li>Accept imperfection, concentrate on solving the specific problem at the right price.</li>
501 502 503 504 505 506
</ul>
</div>
<hr class="docutils" />
<div class="section" id="control-the-migration-quality">
<span id="control-the-migration-quality"></span><h1>Control the migration quality<a class="headerlink" href="#control-the-migration-quality" title="Permalink to this headline"></a></h1>
<ul class="simple">
507
<li>Compare the performance of migrated models with old ones.</li>
508
<li>Follow the google C++ style guide.</li>
509 510 511 512
<li>Build the automatic workflow of generating Python/C++ documentations.<ul>
<li>The documentation of layers and ops should be written inside the code.</li>
<li>Take the documentation quality into account when submitting pull requests.</li>
<li>Preview the documentations, read and improve them from a user&#8217;s perspective.</li>
513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
</ul>
</li>
</ul>
</div>


           </div>
          </div>
          <footer>
  

  <hr/>

  <div role="contentinfo">
    <p>
        &copy; Copyright 2016, PaddlePaddle developers.

    </p>
  </div>
  Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>. 

</footer>

        </div>
      </div>

    </section>

  </div>
  


  

    <script type="text/javascript">
        var DOCUMENTATION_OPTIONS = {
            URL_ROOT:'../',
            VERSION:'',
            COLLAPSE_INDEX:false,
            FILE_SUFFIX:'.html',
            HAS_SOURCE:  true,
            SOURCELINK_SUFFIX: ".txt",
        };
    </script>
      <script type="text/javascript" src="../_static/jquery.js"></script>
      <script type="text/javascript" src="../_static/underscore.js"></script>
      <script type="text/javascript" src="../_static/doctools.js"></script>
      <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
       
  

  
  
    <script type="text/javascript" src="../_static/js/theme.js"></script>
  
  
  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
  <script src="../_static/js/paddle_doc_init.js"></script> 

</body>
</html>