distributed_fused_lamb.py 15.1 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import framework, core, layers, unique_name
from paddle.fluid.framework import Variable
from paddle.fluid.clip import ClipGradByGlobalNorm
from paddle.fluid.initializer import Constant
from paddle.fluid.layer_helper import LayerHelper
20
from paddle.fluid.optimizer import Optimizer
21 22 23 24 25 26 27
from paddle.distributed import get_rank, get_world_size
from paddle.fluid.executor import global_scope
from paddle.fluid.framework import name_scope
import numpy as np


class DistributedFusedLamb(Optimizer):
28

29 30 31 32 33 34 35 36 37 38 39 40 41
    def __init__(self,
                 learning_rate=0.001,
                 lamb_weight_decay=0.01,
                 beta1=0.9,
                 beta2=0.999,
                 epsilon=1e-6,
                 parameters=None,
                 grad_clip=None,
                 exclude_from_weight_decay_fn=None,
                 clip_after_allreduce=True,
                 is_grad_scaled_by_nranks=True,
                 alignment=128,
                 use_master_param_norm=True,
42
                 gradient_accumulation_steps=1,
43
                 name=None):
J
Jiabin Yang 已提交
44
        assert not framework._non_static_mode(
45
        ), "DistributedFusedLamb does not support dygraph mode"
46 47 48
        super(DistributedFusedLamb, self).__init__(learning_rate=learning_rate,
                                                   grad_clip=None,
                                                   name=name)
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

        self._beta1 = beta1
        self._beta2 = beta2
        self._epsilon = epsilon
        self._weight_decay = lamb_weight_decay if lamb_weight_decay is not None else 0.0
        if grad_clip is not None:
            assert isinstance(
                grad_clip, ClipGradByGlobalNorm
            ), "Only ClipGradByGlobalNorm is supported in DistributedFusedLamb"
            max_global_grad_norm = grad_clip.clip_norm
        else:
            max_global_grad_norm = -1.0
        self._max_global_grad_norm = max_global_grad_norm
        self._alignment = alignment if alignment is not None else -1
        self._clip_after_allreduce = clip_after_allreduce
        self._is_grad_scaled_by_nranks = is_grad_scaled_by_nranks
        self._exclude_from_weight_decay_fn = exclude_from_weight_decay_fn
        self._scale = None
        self._ring_id = 0
        self._use_master_param_norm = use_master_param_norm
69 70 71
        self._gradient_accumulation_steps = gradient_accumulation_steps
        assert self._gradient_accumulation_steps >= 1

72 73 74 75 76 77 78 79
        self.helper = LayerHelper('distributed_fused_lamb')
        self._supports_check_nan_inf = True  # very import flag for AMP

        main_block = self.helper.main_program.global_block()
        self._found_inf = main_block.create_var(
            name=unique_name.generate('found_inf'),
            shape=[1],
            dtype=core.VarDesc.VarType.BOOL)
80
        self._step = None
81

82 83 84 85 86 87 88 89
        if self._gradient_accumulation_steps > 1:
            self._stop_update = main_block.create_var(
                name=unique_name.generate('stop_update'),
                shape=[1],
                dtype=core.VarDesc.VarType.BOOL)
        else:
            self._stop_update = None

90 91
        self._param_to_master_param = {}

92 93 94
    def _get_stop_update_var(self):
        return self._stop_update if self._stop_update is not None else False

95 96 97 98 99 100 101 102
    def _set_step(self, step):
        self._step = step

    def _get_or_create_step(self):
        if self._step is None:
            self._step = self._create_persistable_var('step', dtype='int64')
        return self._step

103 104 105 106 107 108 109 110
    def _set_scale(self, scale):
        assert scale is not None
        if not isinstance(scale, Variable):
            scale = self._create_scale_from_constant(scale)
        self._scale = scale

    def _create_scale_from_constant(self, value):
        name = unique_name.generate('global_scale')
111 112 113 114 115
        return layers.create_global_var(name=name,
                                        shape=[1],
                                        dtype='float32',
                                        value=float(value),
                                        persistable=True)
116 117 118 119 120 121 122 123 124 125

    def _get_or_create_scale(self):
        if self._scale is None:
            self._scale = self._create_scale_from_constant(1.0)
        return self._scale

    def _create_persistable_var(self, name=None, shape=[-1], dtype='float32'):
        startup_block = self.helper.startup_program.global_block()
        if name is not None:
            name = unique_name.generate(name)
126 127 128 129 130
        startup_var = startup_block.create_var(name=name,
                                               shape=shape,
                                               dtype=dtype,
                                               persistable=True,
                                               stop_gradient=True)
131
        main_block = self.helper.main_program.global_block()
132 133 134 135 136
        main_var = main_block.create_var(name=startup_var.name,
                                         shape=startup_var.shape,
                                         dtype=startup_var.dtype,
                                         persistable=True,
                                         stop_gradient=True)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
        return main_var

    def _get_parameter(self, name, scope=None):
        if scope is None:
            scope = global_scope()

        master_param = self._param_to_master_param.get(name)
        assert master_param is not None

        master_param_t = scope.find_var(master_param).get_tensor()
        assert master_param_t._dtype() == core.VarDesc.VarType.FP32

        param_t = scope.find_var(name).get_tensor()
        if param_t._dtype() == core.VarDesc.VarType.FP32:
            assert param_t._ptr() == master_param_t._ptr()
            return param_t, None
        else:
            assert param_t._dtype() == core.VarDesc.VarType.FP16
            assert param_t.shape() == master_param_t.shape()
            return param_t, master_param_t

    def apply_optimize(self, params_grads):
        self.apply_gradients(params_grads)

    def apply_gradients(self, params_grads):
        flattened = []
        for p, g in params_grads:
            flattened.extend([p, g])
        with flattened[0].block.program._optimized_guard(flattened), name_scope(
                "optimizer"):
            self._apply_gradients_impl(params_grads)

    def _apply_gradients_impl(self, params_grads):
        for p, g in params_grads:
            assert g.type == core.VarDesc.VarType.LOD_TENSOR, "Only support dense gradient"
            g.persistable = True  # the gradient must be persistable for fusion

        fp32_fused_param = self._create_persistable_var('fp32_fused_param')
        fp32_fused_grad = self._create_persistable_var('fp32_fused_grad')
176 177 178 179
        fp16_fused_param = self._create_persistable_var('fp16_fused_param',
                                                        dtype='float16')
        fp16_fused_grad = self._create_persistable_var('fp16_fused_grad',
                                                       dtype='float16')
180 181 182 183 184 185 186 187 188 189 190 191 192

        master_params = []
        for p, g in params_grads:
            master_p = self._create_persistable_var('master_weight')
            self._param_to_master_param[p.name] = master_p.name
            master_params.append(master_p)

        moment1 = self._create_persistable_var('moment1')
        moment1.is_distributed = True
        moment2 = self._create_persistable_var('moment2')
        moment2.is_distributed = True
        beta1pow = self._create_persistable_var('beta1pow')
        beta2pow = self._create_persistable_var('beta2pow')
193

194 195 196
        param_info = self._create_persistable_var('param_info', dtype='int32')
        param_info.is_distributed = True

197 198
        fused_offsets = self._create_persistable_var('fused_offsets',
                                                     dtype='int32')
199 200 201 202

        fp32_partial_fused_offsets = self._create_persistable_var(
            'fp32_partial_fused_offsets', dtype='int32')
        fp32_partial_fused_offsets.is_distributed = True
203

204 205 206 207
        fp16_partial_fused_offsets = self._create_persistable_var(
            'fp16_partial_fused_offsets', dtype='int32')
        fp16_partial_fused_offsets.is_distributed = True

208 209 210
        param_order = self._create_persistable_var('param_order', dtype='int32')
        param_order.is_distributed = True

211 212 213 214 215
        if self._gradient_accumulation_steps > 1:
            fp32_acc_fused_grad = [
                self._create_persistable_var('fp32_acc_fused_grad')
            ]
            fp16_acc_fused_grad = [
216 217
                self._create_persistable_var('fp16_acc_fused_grad',
                                             dtype='float16')
218 219 220 221 222 223 224
            ]
            acc_step = [self._create_persistable_var('acc_step', dtype='int64')]
        else:
            fp32_acc_fused_grad = []
            fp16_acc_fused_grad = []
            acc_step = []

225 226
        step = self._get_or_create_step()

227 228 229 230 231 232
        rank = get_rank()
        nranks = get_world_size()
        scale = self._get_or_create_scale()

        params = [p for p, _ in params_grads]
        grads = [g for _, g in params_grads]
233
        apply_weight_decay = [1] * len(params)
234 235 236
        if self._exclude_from_weight_decay_fn is not None:
            for i, p in enumerate(params):
                if self._exclude_from_weight_decay_fn(p):
237
                    apply_weight_decay[i] = 0
238 239 240

        startup_block = self.helper.startup_program.global_block()
        for g in grads:
241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
            startup_block.create_var(name=g.name,
                                     type=g.type,
                                     dtype=g.dtype,
                                     persistable=g.persistable,
                                     shape=g.shape)

        startup_block.append_op(type='distributed_fused_lamb_init',
                                inputs={
                                    'Param': params,
                                    'Grad': grads,
                                },
                                outputs={
                                    'FP32FusedParam': [fp32_fused_param],
                                    'FP32FusedGrad': [fp32_fused_grad],
                                    'FP16FusedParam': [fp16_fused_param],
                                    'FP16FusedGrad': [fp16_fused_grad],
                                    'Moment1': [moment1],
                                    'Moment2': [moment2],
                                    'Beta1Pow': [beta1pow],
                                    'Beta2Pow': [beta2pow],
                                    'GlobalScale': [scale],
                                    'ParamInfo': [param_info],
                                    'ParamOut':
                                    params,
                                    'MasterParamOut':
                                    master_params,
                                    'GradOut':
                                    grads,
                                    'FP32ShardFusedParamOffsets':
                                    [fp32_partial_fused_offsets],
                                    'FP16ShardFusedParamOffsets':
                                    [fp16_partial_fused_offsets],
                                    'FusedParamOffsets': [fused_offsets],
                                    'ParamOrder': [param_order],
                                    'Step': [step],
                                },
                                attrs={
                                    'alignment': self._alignment,
                                    'rank': rank,
                                    'nranks': nranks,
                                    'apply_weight_decay': apply_weight_decay,
                                    'moment1': 0.0,
                                    'moment2': 0.0,
                                    'beta1': self._beta1,
                                    'beta2': self._beta2,
                                })
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319

        main_block = self.helper.main_program.global_block()
        self._create_global_learning_rate()
        lr = None
        for p_g in params_grads:
            if lr is None:
                lr = self._create_param_lr(p_g)
            else:
                new_lr = self._create_param_lr(p_g)
                assert id(lr) == id(
                    new_lr
                ), "The learning rate for each parameter should be the same"
        assert lr is not None

        lamb_op = main_block.append_op(
            type='distributed_fused_lamb',
            inputs={
                'FP32FusedParam': [fp32_fused_param],
                'FP32FusedGrad': [fp32_fused_grad],
                'FP16FusedParam': [fp16_fused_param],
                'FP16FusedGrad': [fp16_fused_grad],
                'LearningRate': [lr],
                'Moment1': [moment1],
                'Moment2': [moment2],
                'Beta1Pow': [beta1pow],
                'Beta2Pow': [beta2pow],
                'GlobalScale': [scale],
                'ParamInfo': [param_info],
                'Param': params,
                'Grad': grads,
                'FusedParamOffsets': [fused_offsets],
                'FP32ShardFusedParamOffsets': [fp32_partial_fused_offsets],
                'FP16ShardFusedParamOffsets': [fp16_partial_fused_offsets],
320
                'ParamOrder': [param_order],
321 322 323 324 325 326 327 328
            },
            outputs={
                'FP32FusedParamOut': [fp32_fused_param],
                'FP16FusedParamOut': [fp16_fused_param],
                'Moment1Out': [moment1],
                'Moment2Out': [moment2],
                'Beta1PowOut': [beta1pow],
                'Beta2PowOut': [beta2pow],
329 330 331 332
                'ParamOut':
                params,
                'GradOut':
                grads,
333
                'FoundInf': [self._found_inf],
334 335 336 337 338 339 340 341
                'FP32AccFusedGrad':
                fp32_acc_fused_grad,
                'FP16AccFusedGrad':
                fp16_acc_fused_grad,
                'AccStep':
                acc_step,
                'StopUpdate':
                self._stop_update if self._stop_update is not None else [],
342
                'Step': [step],
343 344
            },
            attrs={
345
                'weight_decay': self._weight_decay,
346 347 348 349 350 351 352 353 354
                'beta1': self._beta1,
                'beta2': self._beta2,
                'epsilon': self._epsilon,
                'max_global_grad_norm': self._max_global_grad_norm,
                'clip_after_allreduce': self._clip_after_allreduce,
                'rank': rank,
                'ring_id': self._ring_id,
                'use_master_param_norm': self._use_master_param_norm,
                'is_grad_scaled_by_nranks': self._is_grad_scaled_by_nranks,
355
                'acc_steps': self._gradient_accumulation_steps,
356 357
            })
        return [lamb_op]