conv_mkldnn_op.cc 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

21 22 23 24 25 26 27 28
using framework::DataLayout;
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;
using mkldnn::stream;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

29 30 31 32 33 34 35 36 37 38
class ConvMKLDNNHandler : public platform::MKLDNNHandler {
 public:
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key) {
    conv_pd_ = conv_pd;
  }

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
  ConvMKLDNNHandler(
      std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd,
      std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
          conv_bwd_data_pd,
      std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
          conv_bwd_weights_pd,
      const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine,
      const std::string& base_key)
      : platform::MKLDNNHandler(dev_ctx, engine, base_key),
        conv_pd_(conv_pd),
        conv_bwd_weights_pd_(conv_bwd_weights_pd),
        conv_bwd_data_pd_(conv_bwd_data_pd) {
    // If we are in Grad operatgor then update a key with BWD suffix to
    // distinguish from FWD memory primitives
    key_ += "-BWD";
  }

56
  size_t GetDstMemorySize() const {
57 58 59
    return conv_pd_->dst_primitive_desc().get_size();
  }

60
  size_t GetDiffWeightsMemorySize() const {
61 62 63
    return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size();
  }

64
  size_t GetDiffSourceMemorySize() const {
65 66 67
    return conv_bwd_data_pd_->diff_src_primitive_desc().get_size();
  }

68 69
  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
70
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
71 72 73 74 75 76 77 78
    auto src_pd = conv_bwd_weights_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p,
                               "@weights-src_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromWeightsPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
79
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94
    auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@weights-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffWeightsMemoryFromWeightsPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr,
        "@diff_weights_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffDstMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
95
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
96 97 98 99 100 101 102 103
    auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p,
                               "@data-diff_dst_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromDataPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
104
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
105 106 107 108 109 110 111 112 113 114 115 116
    auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc();
    auto user_pd = user_weights_memory_p->get_primitive_desc();
    return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p,
                               "@data-weights_mem_p", pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireDiffSrcMemoryFromDataPrimitive(
      void* ptr) {
    return this->AcquireMemoryFromPrimitive(
        conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p");
  }

117 118 119 120 121 122 123
  std::shared_ptr<mkldnn::memory> AcquireDstMemoryFromPrimitive(void* ptr) {
    return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr,
                                            "@dst_mem_p");
  }

  std::shared_ptr<mkldnn::memory> AcquireSrcMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_memory_p,
G
gongweibao 已提交
124
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
125 126 127 128 129 130 131 132
    auto src_pd = conv_pd_->src_primitive_desc();
    auto user_pd = user_memory_p->get_primitive_desc();
    return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p",
                               pipeline);
  }

  std::shared_ptr<mkldnn::memory> AcquireWeightsMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_weights_memory_p,
G
gongweibao 已提交
133
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
134 135 136 137 138 139 140
    auto user_weights_pd = user_weights_memory_p->get_primitive_desc();
    auto weights_pd = conv_pd_->weights_primitive_desc();
    return this->AcquireMemory(weights_pd, user_weights_pd,
                               user_weights_memory_p, "@weights_mem_p",
                               pipeline);
  }

141 142 143 144 145 146 147 148 149
  std::shared_ptr<mkldnn::memory> AcquireBiasMemoryFromPrimitive(
      const std::shared_ptr<mkldnn::memory> user_bias_memory_p,
      std::vector<mkldnn::primitive>& pipeline) {  // NOLINT
    auto user_bias_pd = user_bias_memory_p->get_primitive_desc();
    auto bias_pd = conv_pd_->bias_primitive_desc();
    return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p,
                               "@bias_mem_p", pipeline);
  }

150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
  std::shared_ptr<mkldnn::convolution_forward> AcquireConvolution(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> bias_memory_p,
      std::shared_ptr<mkldnn::memory> dst_memory_p) {
    auto prim_key = key_ + "@conv_p";
    auto conv_p = std::static_pointer_cast<mkldnn::convolution_forward>(
        dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false),
                   "Fail to find convolution primitive in device context");
    if (conv_p == nullptr) {
      conv_p = std::make_shared<mkldnn::convolution_forward>(
          *conv_pd_, *(src_memory_p), *(weights_memory_p.get()),
          *(bias_memory_p.get()), *(dst_memory_p.get()));

      dev_ctx_.SetBlob(prim_key, conv_p);
    } else {
      is_reusing_ = true;
    }
    return conv_p;
  }

193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
  std::shared_ptr<mkldnn::convolution_backward_weights>
  AcquireConvolutionBackwardWeights(
      std::shared_ptr<mkldnn::memory> src_memory_p,
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> diff_weights_memory_p) {
    auto prim_key = key_ + "@conv_bwd_weights_p";
    auto conv_bwd_weights_p =
        std::static_pointer_cast<mkldnn::convolution_backward_weights>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_weights_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd weights primitive in device context");
    if (conv_bwd_weights_p == nullptr) {
      // create backward conv primitive for weights
      conv_bwd_weights_p =
          std::make_shared<mkldnn::convolution_backward_weights>(
              *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p,
              *diff_weights_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_weights_p;
  }

  std::shared_ptr<mkldnn::convolution_backward_data>
  AcquireConvolutionBackwardData(
      std::shared_ptr<mkldnn::memory> diff_dst_memory_p,
      std::shared_ptr<mkldnn::memory> weights_memory_p,
      std::shared_ptr<mkldnn::memory> diff_src_memory_p) {
    auto prim_key = key_ + "@conv_bwd_data_p";
    auto conv_bwd_data_p =
        std::static_pointer_cast<mkldnn::convolution_backward_data>(
            dev_ctx_.GetBlob(prim_key));
    PADDLE_ENFORCE(
        (conv_bwd_data_p != nullptr) || (is_reusing_ == false),
        "Fail to find convolution bwd data primitive in device context");
    if (conv_bwd_data_p == nullptr) {
      conv_bwd_data_p = std::make_shared<mkldnn::convolution_backward_data>(
          *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p,
          *diff_src_memory_p);
      dev_ctx_.SetBlob(prim_key, conv_bwd_data_p);
    } else {
      is_reusing_ = true;
    }
    return conv_bwd_data_p;
  }

241 242
  // Generate keys for storing/retriving primitives for this operator
  // TODO(jczaja): Make hashing function more optimial
G
gongweibao 已提交
243 244 245 246 247 248
  static std::string GetHash(memory::dims& input_dims,     // NOLINT
                             memory::dims& weights_dims,   // NOLINT
                             std::vector<int>& strides,    // NOLINT
                             std::vector<int>& paddings,   // NOLINT
                             std::vector<int>& dilations,  // NOLINT
                             int groups, const std::string& suffix) {
249 250 251 252 253 254 255
    return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) +
           dims2str(paddings) + dims2str(dilations) + std::to_string(groups) +
           suffix;
  }

 private:
  std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd_;
256 257 258 259
  std::shared_ptr<mkldnn::convolution_backward_weights::primitive_desc>
      conv_bwd_weights_pd_;
  std::shared_ptr<mkldnn::convolution_backward_data::primitive_desc>
      conv_bwd_data_pd_;
260 261
};

262
template <typename T>
263
class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
264 265 266 267 268
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

269 270
    auto& dev_ctx =
        ctx.template device_context<paddle::platform::MKLDNNDeviceContext>();
271 272 273 274
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
275
    auto* bias = ctx.HasInput("Bias") ? ctx.Input<Tensor>("Bias") : nullptr;
276 277
    auto* output = ctx.Output<Tensor>("Output");

278 279 280 281 282 283
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
284 285 286 287 288 289 290 291 292 293 294
    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(filter->dims().size() == 4,
                   "Filter must be with 4 dimensions, i.e. OIHW");
    if (bias) {
      PADDLE_ENFORCE(bias->layout() == DataLayout::kMKLDNN &&
                         bias->format() != memory::format::format_undef,
                     "Wrong layout/format set for Bias tensor");
      PADDLE_ENFORCE(bias->dims().size() == 1,
                     "Bias must only have 1 dimension, i.e. X");
    }
295 296 297 298

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
M
Michal Gallus 已提交
299
    bool fuse_relu = ctx.Attr<bool>("fuse_relu");
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    int groups = ctx.Attr<int>("groups");

    // TODO(pzelazko-intel) add support for group convolution and dilation
    PADDLE_ENFORCE(groups == 1, "group convolution is not implemented yet");
    PADDLE_ENFORCE(
        dilations.size() == 2 && dilations[0] == 1 && dilations[1] == 1,
        "dilation in convolution is not implemented yet");

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

316 317 318 319 320 321 322 323 324 325 326 327
    // Get unique name for storing MKLDNN primitives
    const std::string key = ConvMKLDNNHandler::GetHash(
        src_tz, weights_tz, strides, paddings, dilations, groups,
        ctx.op().Output("Output"));
    const std::string key_conv_pd = key + "@conv_pd";

    std::vector<primitive> pipeline;

    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
328 329 330 331 332

    /* create memory descriptor for convolution without specified format
     * ('any') which lets a primitive (convolution in this case) choose
     * the memory format preferred for best performance
     */
333 334 335 336
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

337
    auto src_md = platform::MKLDNNMemDesc(
338
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
339
    auto weights_md = platform::MKLDNNMemDesc(
340
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
341 342
    std::vector<int> bias_tz;  // TODO(mgallus): avoid empty vector creation.
                               // Currently used whenever bias is != nullptr.
343
    auto dst_md = platform::MKLDNNMemDesc(
344
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
345 346

    // create a conv primitive descriptor and save it for usage in backward
347 348 349 350 351
    std::shared_ptr<mkldnn::convolution_forward::primitive_desc> conv_pd;
    if (bias) {
      bias_tz = paddle::framework::vectorize2int(bias->dims());
      auto bias_md = platform::MKLDNNMemDesc(
          bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
M
Michal Gallus 已提交
352 353 354
      conv_pd =
          ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md, strides,
                               paddings, mkldnn_engine, fuse_relu);
355 356
    } else {
      conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
M
Michal Gallus 已提交
357
                                     paddings, mkldnn_engine, fuse_relu);
358
    }
359 360
    // Save conv_pd/src_memory/weights_memory for backward pass
    dev_ctx.SetBlob(key_conv_pd, conv_pd);
361

362
    ConvMKLDNNHandler handler(conv_pd, dev_ctx, mkldnn_engine, key);
363

364 365 366 367 368 369
    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));

370 371
    T* output_data =
        output->mutable_data<T>(ctx.GetPlace(), handler.GetDstMemorySize());
372 373 374 375 376 377 378
    // create reorder primitive if the input format is not the preferred one
    auto src_memory_p =
        handler.AcquireSrcMemoryFromPrimitive(user_src_memory_p, pipeline);
    auto weights_memory_p = handler.AcquireWeightsMemoryFromPrimitive(
        user_weights_memory_p, pipeline);
    auto dst_memory_p =
        handler.AcquireDstMemoryFromPrimitive(to_void_cast<T>(output_data));
379 380

    // create convolution op primitive
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    std::shared_ptr<mkldnn::convolution_forward> conv_p;
    if (bias) {
      const T* bias_data = bias->data<T>();
      auto user_bias_md = platform::MKLDNNMemDesc(
          {bias_tz}, platform::MKLDNNGetDataType<T>(), memory::format::x);
      auto user_bias_memory_p =
          handler.AcquireBiasMemory(user_bias_md, to_void_cast<T>(bias_data));

      auto bias_memory_p =
          handler.AcquireBiasMemoryFromPrimitive(user_bias_memory_p, pipeline);
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          bias_memory_p, dst_memory_p);
    } else {
      conv_p = handler.AcquireConvolution(src_memory_p, weights_memory_p,
                                          dst_memory_p);
    }
397 398

    // push primitive to stream and wait until it's executed
399
    pipeline.push_back(*conv_p);
400 401 402
    stream(stream::kind::eager).submit(pipeline).wait();

    output->set_layout(DataLayout::kMKLDNN);
403
    output->set_format(GetMKLDNNFormat(*dst_memory_p));
404
  }
405

406
 private:
M
Michal Gallus 已提交
407 408 409 410 411 412 413 414 415 416 417 418 419 420
  mkldnn::primitive_attr AddRelu() const {
    // Fusion with ReLU layer is executed through the PostOps feature. Create a
    // PostOps object and configure it to execute an eltwise relu operation.
    mkldnn::primitive_attr conv_attr;
    constexpr float scale = 1.0f;
    constexpr float negative_slope = 0.0f;
    constexpr float placeholder = 0.0f;
    mkldnn::post_ops post_operations;
    post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
                                   negative_slope, placeholder);
    conv_attr.set_post_ops(post_operations);
    return conv_attr;
  }

421 422 423 424
  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& dst, const std::vector<int>& strides,
                       const std::vector<int>& paddings,
M
Michal Gallus 已提交
425 426
                       const mkldnn::engine& engine,
                       const bool fuse_relu) const {
427 428 429
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

430 431 432 433
    auto conv_desc = mkldnn::convolution_forward::desc(
        mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
        dst, stride_dims, padding_dims, padding_dims,
        mkldnn::padding_kind::zero);
434

M
Michal Gallus 已提交
435 436 437 438 439 440 441
    mkldnn::primitive_attr conv_attr;
    if (fuse_relu) {
      conv_attr = AddRelu();
    }

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
442

443 444
    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
445
  }
446 447 448 449 450 451

  std::unique_ptr<mkldnn::convolution_forward::primitive_desc>
  ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
                       const memory::desc& bias, const memory::desc& dst,
                       const std::vector<int>& strides,
                       const std::vector<int>& paddings,
M
Michal Gallus 已提交
452 453
                       const mkldnn::engine& engine,
                       const bool fuse_relu) const {
454 455 456 457 458 459 460 461
    memory::dims stride_dims = {strides[0], strides[1]};
    memory::dims padding_dims = {paddings[0], paddings[1]};

    auto conv_desc = mkldnn::convolution_forward::desc(
        mkldnn::prop_kind::forward, mkldnn::convolution_direct, src, weights,
        bias, dst, stride_dims, padding_dims, padding_dims,
        mkldnn::padding_kind::zero);

M
Michal Gallus 已提交
462 463 464 465 466 467 468
    mkldnn::primitive_attr conv_attr;
    if (fuse_relu) {
      conv_attr = AddRelu();
    }

    auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
        conv_desc, conv_attr, engine);
469 470 471 472

    return std::unique_ptr<mkldnn::convolution_forward::primitive_desc>(
        p_conv_pd);
  }
473 474 475
};

template <typename T>
476
class ConvMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
477 478 479 480 481
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

482 483
    auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
484 485 486 487 488 489 490 491 492 493
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    const Tensor* input = ctx.Input<Tensor>("Input");
    const Tensor* filter = ctx.Input<Tensor>("Filter");
    const Tensor* output = ctx.Input<Tensor>("Output");
    const Tensor* output_grad =
        ctx.Input<Tensor>(framework::GradVarName("Output"));
    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

494 495 496 497 498 499 500 501 502 503 504 505 506
    PADDLE_ENFORCE(input->layout() == DataLayout::kMKLDNN &&
                       input->format() != memory::format::format_undef,
                   "Wrong layout/format set for Input tensor");
    PADDLE_ENFORCE(filter->layout() == DataLayout::kMKLDNN &&
                       filter->format() != memory::format::format_undef,
                   "Wrong layout/format set for Filter tensor");
    PADDLE_ENFORCE(output->layout() == DataLayout::kMKLDNN &&
                       output->format() != memory::format::format_undef,
                   "Wrong layout/format set for Output tensor");
    PADDLE_ENFORCE(output_grad->layout() == DataLayout::kMKLDNN &&
                       output_grad->format() != memory::format::format_undef,
                   "Wrong layout/format set for output_grad tensor");

507 508 509 510
    if (!input_grad && !filter_grad) return;

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
511 512
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
513 514 515 516 517 518 519 520 521 522 523 524

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    T* input_grad_data = nullptr;
    T* filter_grad_data = nullptr;

    std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
    std::vector<int> weights_tz =
        paddle::framework::vectorize2int(filter->dims());
    std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());

525
    // Get an unique name from "argument" name of "Output" variable
J
Jacek Czaja 已提交
526
    // as well as attributes of primitive to be created
527 528 529 530 531 532
    // This name will be used as key when saving info into device context
    const std::string key =
        ConvMKLDNNHandler::GetHash(src_tz, weights_tz, strides, paddings,
                                   dilations, groups, ctx.op().Input("Output"));

    const std::string key_conv_pd = key + "@conv_pd";
533
    std::vector<primitive> pipeline;
534

535 536 537 538 539 540 541
    // Create user memory descriptors
    auto user_src_md = platform::MKLDNNMemDesc(
        {src_tz}, platform::MKLDNNGetDataType<T>(), input->format());
    auto user_weights_md = platform::MKLDNNMemDesc(
        {weights_tz}, platform::MKLDNNGetDataType<T>(), filter->format());
    auto user_diff_dst_md = platform::MKLDNNMemDesc(
        {dst_tz}, platform::MKLDNNGetDataType<T>(), output_grad->format());
542 543 544 545 546

    /* create memory descriptor for conv backward without specified format
     * ('any') which lets a primitive (conv backward in this case) choose
     * the memory format preferred for best performance
     */
547 548 549 550
    std::string data_format = ctx.Attr<std::string>("data_format");
    auto chosen_memory_format =
        platform::data_format_to_memory_format(data_format);

551
    auto src_md = platform::MKLDNNMemDesc(
552
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
553
    auto diff_src_md = platform::MKLDNNMemDesc(
554
        src_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
555
    auto weights_md = platform::MKLDNNMemDesc(
556
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
557
    auto diff_weights_md = platform::MKLDNNMemDesc(
558
        weights_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
559
    auto diff_dst_md = platform::MKLDNNMemDesc(
560
        dst_tz, platform::MKLDNNGetDataType<T>(), chosen_memory_format);
561

562
    // Retrieve conv_pd from device context
563 564 565
    auto conv_pd =
        std::static_pointer_cast<mkldnn::convolution_forward::primitive_desc>(
            dev_ctx.GetBlob(key_conv_pd));
566 567 568
    PADDLE_ENFORCE(conv_pd != nullptr,
                   "Fail to find conv_pd in device context");

569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595
    // create backward convolution weights primitive descriptor
    auto conv_bwd_weights_desc = mkldnn::convolution_backward_weights::desc(
        mkldnn::convolution_direct, src_md, diff_weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_weights_pd =
        std::make_shared<mkldnn::convolution_backward_weights::primitive_desc>(
            conv_bwd_weights_desc, mkldnn_engine, *conv_pd);

    // create backward convolution data primitive descriptor
    auto conv_bwd_data_desc = mkldnn::convolution_backward_data::desc(
        mkldnn::convolution_direct, diff_src_md, weights_md, diff_dst_md,
        strides, paddings, paddings, mkldnn::padding_kind::zero);
    auto conv_bwd_data_pd =
        std::make_shared<mkldnn::convolution_backward_data::primitive_desc>(
            conv_bwd_data_desc, mkldnn_engine, *conv_pd);

    ConvMKLDNNHandler handler(conv_pd, conv_bwd_data_pd, conv_bwd_weights_pd,
                              dev_ctx, mkldnn_engine, key);

    // create mkldnn memory from input tensors (data/weights)
    auto user_src_memory_p =
        handler.AcquireSrcMemory(user_src_md, to_void_cast<T>(input_data));
    auto user_weights_memory_p = handler.AcquireWeightsMemory(
        user_weights_md, to_void_cast<T>(filter_data));
    auto user_diff_dst_memory_p = handler.AcquireDiffDstMemory(
        user_diff_dst_md, to_void_cast<T>(output_grad_data));

596 597
    // create backward conv primitive for weights
    if (filter_grad) {
598 599
      auto src_memory_p = handler.AcquireSrcMemoryFromWeightsPrimitive(
          user_src_memory_p, pipeline);
600

601 602 603 604
      auto diff_dst_memory_4filter_p =
          handler.AcquireDiffDstMemoryFromWeightsPrimitive(
              user_diff_dst_memory_p, pipeline);

605
      const size_t size = handler.GetDiffWeightsMemorySize();
606 607
      filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace(), size);

608 609 610 611 612 613 614 615 616
      auto diff_weights_memory_p =
          handler.AcquireDiffWeightsMemoryFromWeightsPrimitive(
              reinterpret_cast<void*>(filter_grad_data));

      auto conv_bwd_weights_p = handler.AcquireConvolutionBackwardWeights(
          src_memory_p, diff_dst_memory_4filter_p, diff_weights_memory_p);

      // push primitive to stream and wait until it's executed
      pipeline.push_back(*conv_bwd_weights_p);
617 618

      filter_grad->set_layout(DataLayout::kMKLDNN);
619
      filter_grad->set_format(GetMKLDNNFormat(*diff_weights_memory_p));
620 621 622
    }

    if (input_grad) {
623 624 625 626 627 628 629
      auto weights_memory_p = handler.AcquireWeightsMemoryFromDataPrimitive(
          user_weights_memory_p, pipeline);

      auto diff_dst_memory_4data_p =
          handler.AcquireDiffDstMemoryFromDataPrimitive(user_diff_dst_memory_p,
                                                        pipeline);

630
      const size_t size = handler.GetDiffSourceMemorySize();
631 632
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace(), size);

633 634 635 636 637 638 639
      auto diff_src_memory_p = handler.AcquireDiffSrcMemoryFromDataPrimitive(
          reinterpret_cast<void*>(input_grad_data));

      auto conv_bwd_data_p = handler.AcquireConvolutionBackwardData(
          diff_dst_memory_4data_p, weights_memory_p, diff_src_memory_p);

      pipeline.push_back(*conv_bwd_data_p);
640 641

      input_grad->set_layout(DataLayout::kMKLDNN);
642
      input_grad->set_format(GetMKLDNNFormat(*diff_src_memory_p));
643
    }
644
    stream(stream::kind::eager).submit(pipeline).wait();
645 646 647 648 649 650 651 652 653
  }  // Compute()
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(conv2d, MKLDNN, ::paddle::platform::CPUPlace,
654
                   ops::ConvMKLDNNOpKernel<float>);
655 656

REGISTER_OP_KERNEL(conv2d_grad, MKLDNN, ::paddle::platform::CPUPlace,
657
                   ops::ConvMKLDNNGradOpKernel<float>);