adagrad_op.h 3.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
C
chengduo 已提交
16

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
19 20 21 22

namespace paddle {
namespace operators {

Q
QI JUN 已提交
23
template <typename DeviceContext, typename T>
Q
QI JUN 已提交
24
struct SparseAdagradFunctor {
C
chengduo 已提交
25 26 27 28
  void operator()(const DeviceContext &context,
                  const framework::SelectedRows &grad,
                  const framework::Tensor &learning_rate, T epsilon,
                  framework::Tensor *moment, framework::Tensor *param);
Q
QI JUN 已提交
29 30
};

Q
QI JUN 已提交
31
template <typename DeviceContext, typename T>
32 33
class AdagradOpKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
34 35 36 37 38 39 40 41 42
  void Compute(const framework::ExecutionContext &ctx) const override {
    const auto *param_var = ctx.InputVar("Param");
    PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
                   "The Var(%s)'s type should be LoDTensor, "
                   "but the received is %s",
                   ctx.Inputs("Param").front(), param_var->Type().name());

    auto *param_out_tensor = ctx.Output<framework::Tensor>("ParamOut");
    auto *moment_out_tensor = ctx.Output<framework::Tensor>("MomentOut");
43

K
Kexin Zhao 已提交
44 45
    param_out_tensor->mutable_data<T>(ctx.GetPlace());
    moment_out_tensor->mutable_data<T>(ctx.GetPlace());
46

Q
QI JUN 已提交
47 48
    T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));

C
chengduo 已提交
49
    auto *grad_var = ctx.InputVar("Grad");
Q
QI JUN 已提交
50 51 52 53 54 55 56
    if (grad_var->IsType<framework::LoDTensor>()) {
      auto param = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Param"));
      auto grad = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Grad"));
      auto moment = framework::EigenVector<T>::Flatten(
          *ctx.Input<framework::Tensor>("Moment"));
C
chengduo 已提交
57
      auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");
Q
QI JUN 已提交
58 59 60

      auto param_out = framework::EigenVector<T>::Flatten(*param_out_tensor);
      auto moment_out = framework::EigenVector<T>::Flatten(*moment_out_tensor);
C
chengduo 已提交
61
      auto *place = ctx.template device_context<DeviceContext>().eigen_device();
Q
QI JUN 已提交
62

Q
QI JUN 已提交
63
      moment_out.device(*place) = moment + grad * grad;
Q
QI JUN 已提交
64
      Eigen::DSizes<int, 1> m_dsize(moment_out_tensor->numel());
P
peterzhang2029 已提交
65
      if (platform::is_cpu_place(ctx.GetPlace())) {
C
chengduo 已提交
66
        auto *lr = learning_rate->data<T>();
P
peterzhang2029 已提交
67 68 69 70 71 72 73 74
        param_out.device(*place) =
            param - lr[0] * grad / (moment_out.sqrt() + epsilon);
      } else {
        auto lr = framework::EigenVector<T>::Flatten(*learning_rate);
        param_out.device(*place) =
            param -
            lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon);
      }
Q
QI JUN 已提交
75
    } else if (grad_var->IsType<framework::SelectedRows>()) {
C
chengduo 已提交
76
      auto *param_tensor = ctx.Input<framework::Tensor>("Param");
Q
QI JUN 已提交
77 78
      PADDLE_ENFORCE_EQ(param_tensor, param_out_tensor);

C
chengduo 已提交
79
      auto *moment_tensor = ctx.Input<framework::Tensor>("Moment");
Q
QI JUN 已提交
80 81
      PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor);

Q
QI JUN 已提交
82 83 84
      SparseAdagradFunctor<DeviceContext, T> functor;
      functor(ctx.template device_context<DeviceContext>(),
              *ctx.Input<framework::SelectedRows>("Grad"),
Q
QI JUN 已提交
85 86 87 88 89
              *ctx.Input<framework::Tensor>("LearningRate"), epsilon,
              moment_out_tensor, param_out_tensor);
    } else {
      PADDLE_THROW("Unsupported Variable Type of Grad");
    }
90 91 92 93 94
  }
};

}  // namespace operators
}  // namespace paddle