device_context.cc 26.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14

15
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
16
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
17
#include "paddle/fluid/platform/cuda_device_guard.h"
18
#endif
19
#include "glog/logging.h"
20
#include "paddle/fluid/platform/profiler.h"
21

22 23 24 25 26
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
27
  if (size == 0) {
28 29
    return Alloc(place, size);
  }
30 31

  if (platform::is_gpu_place(place)) {
32
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
51 52
    return Alloc(place, size);
#else
53 54 55
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
56
#endif
57 58 59
  } else {
    return Alloc(place, size);
  }
60 61 62 63 64
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
65 66 67
namespace paddle {
namespace platform {

68
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
69 70 71
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
72 73 74 75

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
76 77
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
78 79
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
80
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
81
  VLOG(4) << "DeviceContextPool Get: " << place;
D
dzhwinter 已提交
82 83
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
84 85
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
86 87
        "with WITH_GPU, WITH_XPU or WITH_ASCEND_CL option or check that "
        "your train process set the correct device id if you use Executor.",
G
GaoWei8 已提交
88
        place));
D
dzhwinter 已提交
89
  }
90
  return it->second.get().get();
D
dzhwinter 已提交
91 92
}

93 94 95 96 97 98 99 100 101
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
102
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
103
                   }));
C
chengduozh 已提交
104 105
}

D
dzhwinter 已提交
106 107
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
108 109 110 111 112
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
113
  std::set<Place> set;
Y
Yu Yang 已提交
114 115 116 117 118
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
119
#ifdef PADDLE_WITH_MKLDNN
120
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
121
#else
122
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
123
#endif
Y
Yu Yang 已提交
124
    } else if (platform::is_gpu_place(p)) {
125
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
126
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
127
#else
G
GaoWei8 已提交
128 129 130
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
131 132
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
133
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
134 135
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
136
#else
G
GaoWei8 已提交
137
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
138 139
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
140 141 142 143 144 145 146 147
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
148 149 150 151 152 153 154 155
#endif
    } else if (platform::is_npu_place(p)) {
#ifdef PADDLE_WITH_ASCEND_CL
      EmplaceDeviceContext<NPUDeviceContext, NPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(platform::errors::Unimplemented(
          "NPUPlace is not supported. Please "
          "re-compile with WITH_ASCEND_CL option."));
D
dzhwinter 已提交
156 157 158 159 160
#endif
    }
  }
}

161 162 163 164
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
165
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
166 167 168 169 170 171 172
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
173
Place CPUDeviceContext::GetPlace() const { return place_; }
174

175 176 177
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

178
XPUDeviceContext::~XPUDeviceContext() {}
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
194 195 196

  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: " << place_.device;

197
  context_ = xpu::create_context();
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
  const int MAX_XPU_NUM = 16;
  const int l3_size = 13.5 * 1024 * 1024;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
215
  }
216

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
232
  xpu_wait(context_->xpu_stream);
233 234 235 236 237 238 239
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
#ifdef PADDLE_WITH_ASCEND_CL
NPUDeviceContext::NPUDeviceContext(NPUPlace place) : place_(place) {
  NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtCreateContext(&context_, place_.device));
  // NOTE(zhiqiu): Usually, no need to create context explicitly,
  // ACL creates a default context which contains 1 default stream
  // and 1 sync strean after aclrtSetDevice.
  PADDLE_ENFORCE_NPU_SUCCESS(aclrtGetCurrentContext(&context_));
  stream_.reset(new stream::NPUStream(place));
}

NPUDeviceContext::~NPUDeviceContext() {
  // NPUDeviceGuard guard(place_.device);
  // PADDLE_ENFORCE_NPU_SUCCESS(aclrtDestroyContext(context_));
}
255

256
void NPUDeviceContext::Wait() const {
257 258 259
  platform::RecordEvent record_event("NPUDeviceContext/wait");
  VLOG(4) << "NPU context(" << this << ")  Wait";
  stream_->Wait();
260 261 262 263 264 265 266 267 268 269
}

aclrtStream NPUDeviceContext::stream() const { return stream_->raw_stream(); }

Place NPUDeviceContext::GetPlace() const { return place_; }

aclrtContext NPUDeviceContext::context() const { return context_; }
#endif

#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
Q
init  
qijun 已提交
270 271 272 273 274 275 276
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

277
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
278 279 280 281 282
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

283
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
284

285 286 287
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
288
  const cudaDeviceProp& deviceProperties() const override {
289
#endif
Q
init  
qijun 已提交
290 291 292 293
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
294 295 296
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
297 298 299
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
300
    void* retv = buf->ptr();
S
sneaxiy 已提交
301 302 303 304
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
305
    return retv;
Q
init  
qijun 已提交
306 307
  }

S
sneaxiy 已提交
308 309 310 311 312 313
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
314 315 316

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
317
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
Q
init  
qijun 已提交
318 319 320 321 322 323
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
324
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
Q
init  
qijun 已提交
325
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
326 327 328 329
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
330
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
331
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
332
#endif
Q
init  
qijun 已提交
333 334 335 336 337
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
338
  CUDAPlace place_;
339 340 341 342
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
343
  const cudaDeviceProp* device_prop_;  // not owned;
344
#endif
Q
qijun 已提交
345
  mutable void* scratch_;
Q
init  
qijun 已提交
346
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
347
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
348
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
349 350
};

351 352 353 354 355 356 357 358 359
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

360 361 362 363 364 365 366 367 368 369 370 371
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
372
                         const stream::Priority& priority) {
373 374 375 376 377 378
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
379
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
380
  InitCuSolverContext();
381
#endif
382 383 384 385 386 387
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
388
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
389
  DestoryCuSolverContext();
390
#endif
391 392
}

393
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
394
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
395 396 397
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
398
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
399
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
400

C
chengduo 已提交
401 402 403
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

404
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
405 406 407
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
408
                          << ", Driver API Version: " << driver_version_ / 1000
409
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
410 411 412
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
413 414 415 416 417 418 419 420
#ifdef PADDLE_WITH_HIP
  size_t version_major, version_minor, version_patch;
  PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
      &version_major, &version_minor, &version_patch));
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", MIOpen Version: " << version_major << "."
                          << version_minor << "." << version_patch;
#else
421 422 423
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
424
                          << (cudnn_dso_ver % 1000) / 100 << ".";
425
#endif
S
sneaxiy 已提交
426 427
  {
    // Check CUDA/CUDNN version compatiblity
428 429
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
430 431 432
#ifdef PADDLE_WITH_HIP
    auto compile_cuda_version = (HIP_VERSION / 100) * 10 + (HIP_VERSION % 10);
#else
433 434
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
435
#endif
S
sneaxiy 已提交
436 437 438 439 440 441 442 443 444 445 446 447
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
448
  default_ctx_.reset(new CUDAContext(place_));
449 450 451 452
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
453
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
454 455 456 457
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
458 459
}

L
liaogang 已提交
460
Place CUDADeviceContext::GetPlace() const { return place_; }
461

462
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
463

K
Kexin Zhao 已提交
464
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
465
  return compute_capability_;
K
Kexin Zhao 已提交
466 467
}

468
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
469
  return multi_process_ * max_threads_per_mp_;
470 471
}

472 473 474 475 476 477
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

478
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
479
  return context()->EigenDevice().get();
480 481
}

482
bool CUDADeviceContext::tensor_core_available() const {
483
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
484 485
}

486 487 488 489
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

490 491 492
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
493
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
494
#endif
495 496
  return context()->CudnnHandle();
}
497

498 499 500 501 502
#ifdef PADDLE_WITH_HIP
rocblas_handle CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
#else
503 504 505
cublasHandle_t CUDADeviceContext::cublas_handle() const {
  return context()->CublasHandle()->GetCublasHandle();
}
506
#endif
507

S
sneaxiy 已提交
508
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
509
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
510
}
511

512
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
513 514 515
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}
516
#endif
G
Guo Sheng 已提交
517

518
gpuStream_t CUDADeviceContext::stream() const { return context()->RawStream(); }
Q
qijun 已提交
519

C
chengduoZH 已提交
520 521 522 523 524 525 526 527 528 529 530 531 532 533
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
534
#endif
Q
qijun 已提交
535

T
tensor-tang 已提交
536 537
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
538
    : CPUDeviceContext(place), p_blobmap_() {
539
  p_blobmap_.reset(new BlobMap());
540
  p_exec_items_.reset(new ExecShape());
541
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
542 543
}

544 545
MKLDNNDeviceContextThreadLocals::Body::Body()
    : cur_engine(mkldnn::engine::kind::cpu, 0), cur_stream(cur_engine) {
546 547 548 549 550 551
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

552 553 554 555 556 557 558 559 560 561 562 563
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
564
  dev_ctx->ResetBlobMap(exec_ptr_);
565 566
}

567 568 569 570 571 572 573 574 575 576
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
577 578
  cur_input_shape_str = input_shape_str;
}
579 580
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
581 582
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
583

584 585
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
586 587 588
  cur_paddle_data_layout = dl;
}

589 590
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
591 592 593
  return cur_paddle_data_layout;
}

594 595 596 597 598 599 600 601 602
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

603 604 605 606 607 608 609 610
const mkldnn::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
  return cur_engine;
}

mkldnn::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
  return cur_stream;
}

611
void MKLDNNDeviceContext::ResetBlobMap(void* ptr) {
612 613 614
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
615 616 617 618 619 620
    // If no specific executor pointer then clear
    // everything. For executor pointer then clear only
    // objects allocated when using given executor
    if (ptr == nullptr) {
      p_blobmap_->clear();
    } else {
621 622 623 624 625 626 627 628
      // Iterate through all shapes and release
      // for each shape and active executor all entries
      // of this executor
      for (auto& s : *p_exec_items_) {
        for (auto& v : (*s.second)[ptr]) {
          (v.first)->erase(v.second);
        }
        s.second->erase(ptr);
629 630
      }
    }
631 632 633 634 635 636
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

637 638 639 640
void MKLDNNDeviceContext::RemoveShapeEntriesWithExecutor(void) const {
  p_exec_items_->erase(p_exec_items_->begin());
}

641 642
void MKLDNNDeviceContext::LinkEntryWithExecutor(BlobPtr_t<KeyBlob> pblob,
                                                KeyBlob::iterator it) const {
643
  // Take current input shape from TLS
644 645
  // Take current executor addess from TLS
  // and for this executor's items add the one defined with arguments
646 647 648 649 650 651 652 653 654
  auto key_it = p_exec_items_
                    ->insert(std::make_pair(tls().cur_input_shape_str,
                                            std::make_shared<ExecMap>()))
                    .first;
  (*key_it->second)[tls().get_curr_exec()].push_back(std::make_pair(pblob, it));

  VLOG(3) << "LinkEntryWithExecutor, shapes: " << p_exec_items_->size()
          << " curr exec size: "
          << (*key_it->second)[tls().get_curr_exec()].size() << "\n";
655 656
}

657 658 659 660
void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
661
}
662

663
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
664
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
665
  BlobMap* pMap = p_blobmap_.get();
666
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
667
  if (map_it == pMap->end()) {
668 669 670
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
671 672 673 674
  }
  return map_it->second->size();
}

675
void MKLDNNDeviceContext::SetBlob(const std::string& name,
676
                                  BlobPtr_t<void> data) const {
677
  BlobMap* pMap = p_blobmap_.get();
678 679
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
680

681
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
682

683
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
684

685 686
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
687 688 689

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
690
    sBlob = std::make_shared<ShapeBlob>();
691 692
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
693
  } else {
694
    sBlob = map_it->second;
695
  }
T
tensor-tang 已提交
696

697
  // Find KeyBlob for current input shape
698
  auto key_it = sBlob->find(tls().cur_input_shape_str);
699

700
  if (key_it == sBlob->end()) {
701 702
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
703 704
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
705
        sBlob->size() &&
706
        (sBlob->size() >=
707
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
708 709 710
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
711
      RemoveShapeEntriesWithExecutor();
712
    }
713 714
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
715
  } else {
716
    pBlob = key_it->second;
717 718
  }

719 720 721
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
722 723 724 725 726
    auto el =
        pBlob->insert(std::make_pair(name, data));  //  (*pBlob)[name] = data;
    // Register new element in per executor map
    // to have easily erased when executor terminated
    LinkEntryWithExecutor(pBlob, el.first);
727 728 729
  } else {
    blob_it->second = data;  // set data to existing blob
  }
730
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
731
  // lock will be automatically released when out of scope
732
  return;
T
tensor-tang 已提交
733 734
}

735
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) const {
736 737 738 739 740 741 742 743 744
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

745
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
746
    const std::string& name) const {
747
  BlobMap* pMap = p_blobmap_.get();
748 749
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
750

751
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
752

753
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
754

755 756
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
757
  if (map_it == pMap->end()) {
758
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
759 760 761 762 763
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
764
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
765
  if (sBlob_it == sBlob->end()) {
766
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
767 768 769 770
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
771 772 773 774

  // Find Blob via name
  auto key_it = pBlob->find(name);

775
  if (key_it == pBlob->end()) {
776
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
777 778
    return nullptr;
  }
779

780
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
781 782
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
783 784 785
}

#endif
Q
qijun 已提交
786
}  // namespace platform
Q
qijun 已提交
787
}  // namespace paddle