conv_cudnn_op.cu.cc 16.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
武毅 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
武毅 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
武毅 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
武毅 已提交
14

Y
Yi Wang 已提交
15 16 17 18 19 20
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/conv_op.h"
#include "paddle/fluid/platform/assert.h"
#include "paddle/fluid/platform/cudnn_helper.h"
K
Kexin Zhao 已提交
21
#include "paddle/fluid/platform/float16.h"
武毅 已提交
22

Y
Yu Yang 已提交
23
DEFINE_bool(cudnn_deterministic, false,
C
chengduoZH 已提交
24 25
            "Whether allow using an autotuning algorithm for convolution "
            "operator. The autotuning algorithm may be non-deterministic. If "
Y
Yu Yang 已提交
26
            "true, the algorithm is deterministic.");
C
chengduoZH 已提交
27

武毅 已提交
28 29 30 31 32 33 34 35
namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using DataLayout = platform::DataLayout;
K
update  
Kexin Zhao 已提交
36 37
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;
武毅 已提交
38

Q
qiaolongfei 已提交
39 40
static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES =
    static_cast<size_t>(1024) * 1024 * 1024;
武毅 已提交
41 42

template <typename T>
43
class CUDNNConvOpKernel : public framework::OpKernel<T> {
武毅 已提交
44 45 46
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
47
                   "It must use CUDAPlace.");
武毅 已提交
48 49 50 51 52 53 54 55
    auto* input = ctx.Input<Tensor>("Input");
    auto* filter = ctx.Input<Tensor>("Filter");
    auto* output = ctx.Output<Tensor>("Output");

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
56 57
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
58 59 60 61 62 63 64 65 66 67 68

    const T* input_data = input->data<T>();
    const T* filter_data = filter->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_desc;
    ScopedFilterDescriptor filter_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
69 70 71 72 73 74 75
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
76
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
77 78 79
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
80
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
81 82 83
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
84

C
chengduoZH 已提交
85 86 87 88 89 90
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
    cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
        layout, framework::vectorize2int(output->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
91 92

    int input_channels = input->dims()[1];
武毅 已提交
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }
    int output_channels = filter->dims()[0];
    int output_height, output_width, output_depth;
    if (output->dims().size() == 5) {
      output_depth = output->dims()[2];
      output_height = output->dims()[3];
      output_width = output->dims()[4];
    } else {
      output_depth = 1;
      output_height = output->dims()[2];
      output_width = output->dims()[3];
    }
武毅 已提交
114

武毅 已提交
115 116
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
武毅 已提交
117
    int group_offset_out =
武毅 已提交
118
        output_channels / groups * output_height * output_width * output_depth;
武毅 已提交
119 120 121 122 123 124 125 126 127
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn conv workspace ---------------------
    size_t workspace_size_in_bytes;  // final workspace to allocate.
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }
    // ------------------- cudnn conv algorithm ---------------------
    cudnnConvolutionFwdAlgo_t algo;
Q
QI JUN 已提交
128 129
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
        workspace_size_limit, &algo));

#if CUDA_VERSION >= 9000 && CUDNN_VERSION_MIN(7, 0, 1)
    // Tensor core is supported since the volta GPU and
    // is only enabled when input and filter data are float16
    if (dev_ctx.GetComputeCapability() >= 70 &&
        std::type_index(typeid(T)) ==
            std::type_index(typeid(platform::float16))) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_TENSOR_OP_MATH));
      // Currently tensor core is only enabled using this algo
K
Kexin Zhao 已提交
145 146
      algo = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
    } else {
147 148
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          cudnn_conv_desc, CUDNN_DEFAULT_MATH));
K
Kexin Zhao 已提交
149
    }
150
#endif
K
Kexin Zhao 已提交
151

武毅 已提交
152
    // get workspace size able to allocate
W
Wu Yi 已提交
153
    CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
武毅 已提交
154 155
        handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc,
        cudnn_output_desc, algo, &workspace_size_in_bytes));
K
Kexin Zhao 已提交
156 157 158 159 160
    // It is possible for float16 on Volta GPU to allocate more memory than
    // the limit because the algo is overrided to use tensor core.
    PADDLE_ENFORCE_LE(workspace_size_in_bytes, workspace_size_limit,
                      "workspace_size to be allocated exceeds the limit");

武毅 已提交
161
    // ------------------- cudnn conv forward ---------------------
K
update  
Kexin Zhao 已提交
162
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
S
sneaxiy 已提交
163
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
武毅 已提交
164
    for (int i = 0; i < groups; i++) {
165 166 167 168 169 170 171
      auto cudnn_func = [&](void* cudnn_workspace) {
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionForward(
            handle, &alpha, cudnn_input_desc, input_data + i * group_offset_in,
            cudnn_filter_desc, filter_data + i * group_offset_filter,
            cudnn_conv_desc, algo, cudnn_workspace, workspace_size_in_bytes,
            &beta, cudnn_output_desc, output_data + i * group_offset_out));
      };
S
sneaxiy 已提交
172
      workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
173 174 175 176 177
    }
  }
};

template <typename T>
178
class CUDNNConvGradOpKernel : public framework::OpKernel<T> {
武毅 已提交
179 180 181
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()),
D
dzhwinter 已提交
182
                   "It must use CUDAPlace.");
武毅 已提交
183 184 185 186 187 188 189 190 191 192 193 194 195 196
    auto input = ctx.Input<Tensor>("Input");
    auto filter = ctx.Input<Tensor>("Filter");
    auto output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
    auto input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    auto filter_grad = ctx.Output<Tensor>(framework::GradVarName("Filter"));

    const T* input_data = input->data<T>();
    const T* output_grad_data = output_grad->data<T>();
    const T* filter_data = filter->data<T>();

    std::vector<int> strides = ctx.Attr<std::vector<int>>("strides");
    std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
    std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
    int groups = ctx.Attr<int>("groups");
Q
qiaolongfei 已提交
197 198
    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));
武毅 已提交
199 200 201 202 203 204 205 206 207

    // ------------------- cudnn descriptors ---------------------
    ScopedTensorDescriptor input_desc;
    ScopedTensorDescriptor output_grad_desc;

    ScopedFilterDescriptor filter_desc;
    ScopedFilterDescriptor filter_grad_desc;
    ScopedConvolutionDescriptor conv_desc;
    DataLayout layout = DataLayout::kNCHW;
武毅 已提交
208 209 210 211 212 213 214
    if (input->dims().size() == 5) {
      layout = DataLayout::kNCDHW;
    }

    cudnnConvolutionDescriptor_t cudnn_conv_desc =
        conv_desc.descriptor<T>(paddings, strides, dilations);

武毅 已提交
215
#if CUDNN_VERSION_MIN(7, 0, 1)
武毅 已提交
216 217 218
    // cudnn 7 can support groups, no need to do it mannually
    // FIXME(typhoonzero): find a better way to disable groups
    // rather than setting it to 1.
W
Wu Yi 已提交
219
    CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionGroupCount(
武毅 已提交
220 221 222
        cudnn_conv_desc, groups));
    groups = 1;
#endif
武毅 已提交
223

C
chengduoZH 已提交
224 225
    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()), groups);
武毅 已提交
226
    cudnnTensorDescriptor_t cudnn_output_grad_desc =
C
chengduoZH 已提交
227 228 229 230
        output_grad_desc.descriptor<T>(
            layout, framework::vectorize2int(output_grad->dims()), groups);
    cudnnFilterDescriptor_t cudnn_filter_desc = filter_desc.descriptor<T>(
        layout, framework::vectorize2int(filter->dims()), groups);
武毅 已提交
231 232

    int input_channels = input->dims()[1];
武毅 已提交
233 234 235 236 237 238 239 240 241 242 243
    int input_height, input_width, input_depth;
    if (input->dims().size() == 5) {
      input_depth = input->dims()[2];
      input_height = input->dims()[3];
      input_width = input->dims()[4];
    } else {  // dim size is enforced in InferShape
      input_depth = 1;
      input_height = input->dims()[2];
      input_width = input->dims()[3];
    }

武毅 已提交
244
    int output_grad_channels = filter->dims()[0];
武毅 已提交
245 246 247 248 249 250 251 252 253 254
    int output_grad_height, output_grad_width, output_grad_depth;
    if (input->dims().size() == 5) {
      output_grad_depth = output_grad->dims()[2];
      output_grad_height = output_grad->dims()[3];
      output_grad_width = output_grad->dims()[4];
    } else {
      output_grad_depth = 1;
      output_grad_height = output_grad->dims()[2];
      output_grad_width = output_grad->dims()[3];
    }
武毅 已提交
255

武毅 已提交
256 257 258 259
    int group_offset_in =
        input_channels / groups * input_height * input_width * input_depth;
    int group_offset_out = output_grad_channels / groups * output_grad_height *
                           output_grad_width * output_grad_depth;
武毅 已提交
260 261 262 263 264 265 266 267 268 269
    int group_offset_filter = filter->numel() / groups;
    // ------------------- cudnn backward algorithm ---------------------
    cudnnConvolutionBwdDataAlgo_t data_algo;
    cudnnConvolutionBwdFilterAlgo_t filter_algo;
    size_t workspace_size_in_bytes = 0, tmp_size = 0;
    size_t workspace_size_limit = kCONV_CUDNN_WORKSPACE_LIMIT_BYTES;
    if (user_workspace_size > 0) {
      workspace_size_limit = user_workspace_size * 1024 * 1024;
    }

Q
QI JUN 已提交
270 271
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto handle = dev_ctx.cudnn_handle();
武毅 已提交
272
    if (input_grad) {
Y
Yu Yang 已提交
273
      if (!FLAGS_cudnn_deterministic) {
W
Wu Yi 已提交
274
        CUDNN_ENFORCE(
C
chengduoZH 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
            platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm(
                handle, cudnn_filter_desc,
                // dyDesc: Handle to the previously initialized input
                // differential
                // tensor descriptor.
                cudnn_output_grad_desc, cudnn_conv_desc,
                // dxDesc: Handle to the previously initialized output tensor
                // descriptor.
                cudnn_input_desc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &data_algo));
      } else {
        data_algo = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
      }

W
Wu Yi 已提交
290
      CUDNN_ENFORCE(
武毅 已提交
291 292
          platform::dynload::cudnnGetConvolutionBackwardDataWorkspaceSize(
              handle, cudnn_filter_desc, cudnn_output_grad_desc,
武毅 已提交
293
              cudnn_conv_desc, cudnn_input_desc, data_algo, &tmp_size));
武毅 已提交
294 295 296 297
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }

    if (filter_grad) {
Y
Yu Yang 已提交
298
      if (!FLAGS_cudnn_deterministic) {
W
Wu Yi 已提交
299
        CUDNN_ENFORCE(
C
chengduoZH 已提交
300 301 302 303 304 305 306 307
            platform::dynload::cudnnGetConvolutionBackwardFilterAlgorithm(
                handle, cudnn_input_desc, cudnn_output_grad_desc,
                cudnn_conv_desc, cudnn_filter_desc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                workspace_size_limit, &filter_algo));
      } else {
        filter_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
      }
武毅 已提交
308

W
Wu Yi 已提交
309
      CUDNN_ENFORCE(
武毅 已提交
310 311 312 313 314
          platform::dynload::cudnnGetConvolutionBackwardFilterWorkspaceSize(
              handle, cudnn_input_desc, cudnn_output_grad_desc, cudnn_conv_desc,
              cudnn_filter_desc, filter_algo, &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
315

武毅 已提交
316
    // ------------------- cudnn conv backward data ---------------------
K
update  
Kexin Zhao 已提交
317
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
S
sneaxiy 已提交
318
    auto workspace_handle = dev_ctx.cudnn_workspace_handle();
武毅 已提交
319 320
    if (input_grad) {
      T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
321 322
      // Because beta is zero, it is unnecessary to reset input_grad.

武毅 已提交
323
      for (int i = 0; i < groups; i++) {
324 325 326 327 328 329 330 331
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardData(
              handle, &alpha, cudnn_filter_desc,
              filter_data + i * group_offset_filter, cudnn_output_grad_desc,
              output_grad_data + i * group_offset_out, cudnn_conv_desc,
              data_algo, cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_input_desc, input_grad_data + i * group_offset_in));
        };
S
sneaxiy 已提交
332
        workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
333 334 335 336 337
      }
    }
    // ------------------- cudnn conv backward filter ---------------------
    if (filter_grad) {
      T* filter_grad_data = filter_grad->mutable_data<T>(ctx.GetPlace());
C
chengduoZH 已提交
338
      // Because beta is zero, it is unnecessary to reset filter_grad.
武毅 已提交
339
      for (int i = 0; i < groups; i++) {
340 341 342 343 344 345 346 347
        auto cudnn_func = [&](void* cudnn_workspace) {
          CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBackwardFilter(
              handle, &alpha, cudnn_input_desc,
              input_data + i * group_offset_in, cudnn_output_grad_desc,
              output_grad_data + i * group_offset_out, cudnn_conv_desc,
              filter_algo, cudnn_workspace, workspace_size_in_bytes, &beta,
              cudnn_filter_desc, filter_grad_data + i * group_offset_filter));
        };
S
sneaxiy 已提交
348
        workspace_handle.RunFunc(cudnn_func, workspace_size_in_bytes);
武毅 已提交
349 350 351 352 353 354 355 356
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle

K
Kexin Zhao 已提交
357 358
namespace plat = paddle::platform;
REGISTER_OP_KERNEL(conv2d, CUDNN, plat::CUDAPlace,
359
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
360
                   paddle::operators::CUDNNConvOpKernel<double>,
K
Kexin Zhao 已提交
361
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
362
REGISTER_OP_KERNEL(conv2d_grad, CUDNN, plat::CUDAPlace,
363
                   paddle::operators::CUDNNConvGradOpKernel<float>,
364
                   paddle::operators::CUDNNConvGradOpKernel<double>);
365

K
Kexin Zhao 已提交
366
REGISTER_OP_KERNEL(conv3d, CUDNN, plat::CUDAPlace,
367
                   paddle::operators::CUDNNConvOpKernel<float>,
K
Kexin Zhao 已提交
368 369
                   paddle::operators::CUDNNConvOpKernel<double>,
                   paddle::operators::CUDNNConvOpKernel<plat::float16>);
K
Kexin Zhao 已提交
370
REGISTER_OP_KERNEL(conv3d_grad, CUDNN, plat::CUDAPlace,
371
                   paddle::operators::CUDNNConvGradOpKernel<float>,
372
                   paddle::operators::CUDNNConvGradOpKernel<double>);