fusion_lstm_op.cc 22.4 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/fused/fusion_lstm_op.h"
T
tensor-tang 已提交
16
#include <string>
17
#include "paddle/fluid/operators/jit/kernels.h"
T
tensor-tang 已提交
18
#include "paddle/fluid/operators/math/blas.h"
19
#include "paddle/fluid/operators/math/fc.h"
T
tensor-tang 已提交
20
#include "paddle/fluid/operators/math/sequence2batch.h"
21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
T
tensor-tang 已提交
24

T
tensor-tang 已提交
25 26 27 28
namespace paddle {
namespace operators {

void FusionLSTMOp::InferShape(framework::InferShapeContext* ctx) const {
29 30 31 32 33 34 35
  OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("WeightX"), "Input", "WeightX", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("WeightH"), "Input", "WeightH", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasInput("Bias"), "Input", "Bias", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("XX"), "Output", "XX", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "fusion_lstm");
  OP_INOUT_CHECK(ctx->HasOutput("Cell"), "Output", "Cell", "fusion_lstm");
T
tensor-tang 已提交
36

T
tensor-tang 已提交
37
  auto x_dims = ctx->GetInputDim("X");
38 39 40 41 42
  PADDLE_ENFORCE_EQ(x_dims.size(), 2,
                    platform::errors::InvalidArgument(
                        "Input(X)'s rank must be 2, but received x's rank "
                        "is:%d, x dim is:[%s]",
                        x_dims.size(), x_dims));
T
tensor-tang 已提交
43

44
  if (ctx->HasInput("H0")) {
45
    OP_INOUT_CHECK(ctx->HasInput("C0"), "Input", "C0", "fusion_lstm");
T
tensor-tang 已提交
46 47
    auto h_dims = ctx->GetInputDim("H0");
    auto c_dims = ctx->GetInputDim("C0");
48 49 50 51 52
    PADDLE_ENFORCE_EQ(h_dims, c_dims,
                      platform::errors::InvalidArgument(
                          "The dimension of Input(H0) and Input(C0) should be "
                          "same, but received h0 dims is:[%s], c0 dims is:[%s]",
                          h_dims, c_dims));
T
tensor-tang 已提交
53 54
  }

T
tensor-tang 已提交
55 56
  auto wx_dims = ctx->GetInputDim("WeightX");
  PADDLE_ENFORCE_EQ(wx_dims.size(), 2,
57 58 59 60
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightX) should be 2, but received "
                        "WeightX's rank is:%d, WeightX dim is:[%s]",
                        wx_dims.size(), wx_dims));
T
tensor-tang 已提交
61
  PADDLE_ENFORCE_EQ(wx_dims[0], x_dims[1],
62 63 64 65 66
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(WeightX) "
                        "should equal to second dimension of Input(X), but "
                        "received WeightX first dim is:%d, X second dim is:%d",
                        wx_dims[0], x_dims[1]));
T
tensor-tang 已提交
67 68 69

  int frame_size = wx_dims[1] / 4;
  auto wh_dims = ctx->GetInputDim("WeightH");
70

T
tensor-tang 已提交
71
  PADDLE_ENFORCE_EQ(wh_dims.size(), 2,
72 73 74 75
                    platform::errors::InvalidArgument(
                        "The rank of Input(WeightH) should be 2, but received "
                        "WeightH rank is:%d, WeightH dim is:[%s]",
                        wh_dims.size(), wh_dims));
T
tensor-tang 已提交
76
  PADDLE_ENFORCE_EQ(wh_dims[0], frame_size,
77 78 79 80 81 82
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(WeightH) "
                        "should equal to frame size, but received WeightH "
                        "first dim is:%d, frame size is:%d.",
                        wh_dims[0], frame_size));

T
tensor-tang 已提交
83
  PADDLE_ENFORCE_EQ(wh_dims[1], 4 * frame_size,
84 85 86 87 88
                    platform::errors::InvalidArgument(
                        "The second dimension of Input(WeightH) "
                        "should equal to 4 * frame_size, but received WeightH "
                        "second dimension is:%d, frame size is:%d.",
                        wh_dims[1], frame_size));
T
tensor-tang 已提交
89 90

  auto b_dims = ctx->GetInputDim("Bias");
91 92 93 94 95
  PADDLE_ENFORCE_EQ(b_dims.size(), 2,
                    platform::errors::InvalidArgument(
                        "The rank of Input(Bias) should be 2, but received "
                        "Bias rank is:%d, Bias dim is:[%s]",
                        b_dims.size(), b_dims));
T
tensor-tang 已提交
96
  PADDLE_ENFORCE_EQ(b_dims[0], 1,
97 98 99 100 101
                    platform::errors::InvalidArgument(
                        "The first dimension of Input(Bias) should be 1, but "
                        "received Bias's dimension is:[%s]",
                        b_dims));

T
tensor-tang 已提交
102 103
  if (ctx->Attrs().Get<bool>("use_peepholes")) {
    PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
104 105 106 107 108
                      platform::errors::InvalidArgument(
                          "The second dimension of Input(Bias) should be "
                          "7 * %d if enable peepholes connection, but received "
                          "Bias dim is:[%s]",
                          frame_size, b_dims));
T
tensor-tang 已提交
109 110
    ctx->SetOutputDim("CheckedCell", {2, frame_size});
  } else {
111 112 113 114 115 116
    PADDLE_ENFORCE_EQ(
        b_dims[1], 4 * frame_size,
        platform::errors::InvalidArgument(
            "The second dimension of Input(Bias) should be "
            "4 * %d if disable peepholes, but received Bias dim is:[%s]",
            frame_size, b_dims));
T
tensor-tang 已提交
117
  }
T
tensor-tang 已提交
118

T
tensor-tang 已提交
119
  framework::DDim out_dims({x_dims[0], frame_size});
T
tensor-tang 已提交
120 121
  ctx->SetOutputDim("Hidden", out_dims);
  ctx->SetOutputDim("Cell", out_dims);
T
tensor-tang 已提交
122 123
  ctx->ShareLoD("X", "Hidden");
  ctx->ShareLoD("X", "Cell");
T
tensor-tang 已提交
124
  int xx_width;
T
tensor-tang 已提交
125
  if (ctx->Attrs().Get<bool>("use_seq")) {
T
tensor-tang 已提交
126 127 128
    xx_width = wx_dims[1];
  } else {
    xx_width = x_dims[1] > wx_dims[1] ? wx_dims[1] : x_dims[1];
129 130 131 132 133 134 135 136 137 138 139 140

    OP_INOUT_CHECK(ctx->HasOutput("BatchedInput"), "Output", "BatchedInput",
                   "fusion_lstm");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedHidden"), "Output", "BatchedHidden",
                   "fusion_lstm");
    OP_INOUT_CHECK(ctx->HasOutput("BatchedCell"), "Output", "BatchedCell",
                   "fusion_lstm");
    OP_INOUT_CHECK(ctx->HasOutput("ReorderedH0"), "Output", "ReorderedH0",
                   "fusion_lstm");
    OP_INOUT_CHECK(ctx->HasOutput("ReorderedC0"), "Output", "ReorderedC0",
                   "fusion_lstm");

T
tensor-tang 已提交
141 142 143
    ctx->SetOutputDim("BatchedInput", {x_dims[0], wx_dims[1]});
    ctx->SetOutputDim("BatchedHidden", out_dims);
    ctx->SetOutputDim("BatchedCell", out_dims);
T
tensor-tang 已提交
144
  }
T
tensor-tang 已提交
145 146
  ctx->SetOutputDim("XX", {x_dims[0], xx_width});
  ctx->ShareLoD("X", "XX");
T
tensor-tang 已提交
147 148 149 150
}

framework::OpKernelType FusionLSTMOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
151 152 153 154 155 156 157 158 159 160
  framework::LibraryType library = framework::LibraryType::kPlain;
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
  auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
#ifdef PADDLE_WITH_MKLDNN
  if (this->CanMKLDNNBeUsed(ctx, data_type)) {
    library = framework::LibraryType::kMKLDNN;
    layout = framework::DataLayout::kMKLDNN;
  }
#endif
  return framework::OpKernelType(data_type, ctx.GetPlace(), layout, library);
T
tensor-tang 已提交
161 162 163
}

void FusionLSTMOpMaker::Make() {
T
tensor-tang 已提交
164
  AddInput("X",
T
tensor-tang 已提交
165
           "(LoDTensor) the input is a LodTensor, which support "
T
tensor-tang 已提交
166
           "variable-time length input sequence. The underlying tensor in "
T
tensor-tang 已提交
167 168 169 170 171 172 173 174 175
           "this LoDTensor is a matrix with shape (T X M), where T is the "
           "total time steps in this mini-batch, M is the dim size of x.");
  AddInput("WeightX",
           "(Tensor) the learnable weights of X."
           " - The shape is (M x 4D), where M is the dim size of x, D is the "
           "hidden size. "
           " - Weight = {W_cx, W_ix, W_fx, W_ox}");
  AddInput("WeightH",
           "(Tensor) same as LSTMOp, the learnable hidden-hidden weights."
T
tensor-tang 已提交
176 177 178
           " - The shape is (D x 4D), where D is the hidden size. "
           " - Weight = {W_ch, W_ih, W_fh, W_oh}");
  AddInput("Bias",
T
tensor-tang 已提交
179 180
           "(Tensor) the learnable weights. Almost same as LSTMOp"
           "Note: we should add the fc bias into this (1x4D) in bias."
T
tensor-tang 已提交
181 182 183 184 185 186 187 188
           "input-hidden bias weight and peephole connections weight if "
           "setting `use_peepholes` True. "
           "1. `use_peepholes = False` "
           " - The shape is (1 x 4D). "
           " - Bias = {b_c, b_i, b_f, b_o}."
           "2. `use_peepholes = True` "
           " - The shape is (1 x 7D). "
           " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
T
tensor-tang 已提交
189 190 191 192 193 194 195 196 197 198 199 200
  AddInput("H0",
           "(Tensor, optional) (same as LSTMOp) the initial hidden state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size and D is the hidden size.")
      .AsDispensable();
  AddInput("C0",
           "(Tensor, optional) (same as LSTMOp) (the initial cell state is an "
           "optional "
           "input. This is a tensor with shape (N x D), where N is the "
           "batch size. `H0` and `C0` can be NULL but only at the same time.")
      .AsDispensable();
T
tensor-tang 已提交
201
  AddOutput("Hidden",
T
tensor-tang 已提交
202
            "(LoDTensor) (same as LSTMOp) the hidden state of LSTM operator. "
T
tensor-tang 已提交
203 204
            "The shape is (T x D), and lod is the same with the `Input`.");
  AddOutput("Cell",
T
tensor-tang 已提交
205
            "(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
T
tensor-tang 已提交
206
            "The shape is (T x D), and lod is the same with the `Input`.");
T
tensor-tang 已提交
207
  AddOutput("XX",
T
tensor-tang 已提交
208 209 210
            "(LoDTensor) the result after X * WeightX (size is T x 4D)"
            " or batched_X (size is T x M), this will be automatically chosen,"
            " where T is the total time steps in this mini-batch,"
T
tensor-tang 已提交
211 212
            " D is the hidden size, M is the dim size of x input.")
      .AsIntermediate();
T
tensor-tang 已提交
213 214 215 216 217
  AddOutput("BatchedInput", "(LoDTensor) (T x 4D).").AsIntermediate();
  AddOutput("BatchedHidden", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("BatchedCell", "(LoDTensor) (T x D).").AsIntermediate();
  AddOutput("ReorderedH0", "(LoDTensor) (N x D).").AsIntermediate();
  AddOutput("ReorderedC0", "(LoDTensor) (N x D).").AsIntermediate();
T
tensor-tang 已提交
218 219
  AddOutput("CheckedCell", "(Tensor) (2 x D) only for peephole.")
      .AsIntermediate();
T
tensor-tang 已提交
220
  AddAttr<bool>("use_peepholes",
翟飞跃 已提交
221
                "(bool, default: True) "
T
tensor-tang 已提交
222 223 224
                "whether to enable diagonal/peephole connections.")
      .SetDefault(true);
  AddAttr<bool>("is_reverse",
翟飞跃 已提交
225
                "(bool, default: False) "
T
tensor-tang 已提交
226 227
                "whether to compute reversed LSTM.")
      .SetDefault(false);
T
tensor-tang 已提交
228
  AddAttr<bool>("use_seq",
翟飞跃 已提交
229
                "(bool, default: True) "
T
tensor-tang 已提交
230 231
                "whether to use seq mode to compute.")
      .SetDefault(true);
T
tensor-tang 已提交
232 233 234 235 236 237 238 239
  AddAttr<std::string>("gate_activation",
                       "(string, default: sigmoid)"
                       "The activation for input gate, forget gate and output "
                       "gate, `sigmoid` by default.")
      .SetDefault("sigmoid")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("cell_activation",
                       "(string, default: tanh)"
翟飞跃 已提交
240
                       "The activation for cell output, `tanh` by default.")
T
tensor-tang 已提交
241 242 243 244 245 246 247 248
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
  AddAttr<std::string>("candidate_activation",
                       "(string, default: tanh)"
                       "The activation for candidate hidden state, "
                       "`tanh` by default.")
      .SetDefault("tanh")
      .InEnum({"sigmoid", "tanh", "relu", "identity"});
249 250 251
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
252 253 254 255
  AddAttr<bool>("force_fp32_output",
                "(bool, default false) Force INT8 kernel output FP32, only "
                "used in MKL-DNN INT8")
      .SetDefault(false);
T
tensor-tang 已提交
256
  AddComment(R"DOC(
T
tensor-tang 已提交
257 258
Fusion Long-Short Term Memory (LSTM) Operator.
This operator fuse the X into LSTM, more details can refer to LSTM op.
T
tensor-tang 已提交
259 260 261
)DOC");
}

T
tensor-tang 已提交
262
template <typename T>
T
tensor-tang 已提交
263
class FuisonLSTMKernel : public framework::OpKernel<T> {
T
tensor-tang 已提交
264
 public:
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
#define INIT_BASE_DEFINES                                   \
  using DeviceContext = paddle::platform::CPUDeviceContext; \
  auto* x = ctx.Input<LoDTensor>("X");                      \
  auto* h0 = ctx.Input<Tensor>("H0");                       \
  auto* c0 = ctx.Input<Tensor>("C0");                       \
  auto* wx = ctx.Input<Tensor>("WeightX");                  \
  auto* wh = ctx.Input<Tensor>("WeightH");                  \
  auto* bias = ctx.Input<Tensor>("Bias");                   \
  auto* xx = ctx.Output<LoDTensor>("XX");                   \
  auto* hidden_out = ctx.Output<LoDTensor>("Hidden");       \
  auto* cell_out = ctx.Output<LoDTensor>("Cell");           \
  bool is_reverse = ctx.Attr<bool>("is_reverse");           \
  bool use_peepholes = ctx.Attr<bool>("use_peepholes");     \
  auto x_dims = x->dims();   /* T x M*/                     \
  auto wh_dims = wh->dims(); /* D x 4D*/                    \
  const int M = x_dims[1];                                  \
  const int D = wh_dims[0];                                 \
  const int D4 = wh_dims[1]

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
#define INIT_OTHER_DEFINES                                                     \
  const T* x_data = x->data<T>();                                              \
  const T* wx_data = wx->data<T>();                                            \
  const T* wh_data = wh->data<T>();                                            \
  /* diagonal weight*/                                                         \
  const T* wp_data = bias->data<T>() + D4;                                     \
  /* for peephole only*/                                                       \
  T* checked_cell_data = nullptr;                                              \
  auto place = ctx.GetPlace();                                                 \
  if (use_peepholes) {                                                         \
    /* w_ic * Ct-1, w_fc * Ct-1  ; w_oc * Ct => ih*/                           \
    auto* checked_cell = ctx.Output<Tensor>("CheckedCell");                    \
    checked_cell_data = checked_cell->mutable_data<T>(place);                  \
  }                                                                            \
  const jit::lstm_attr_t attr(                                                 \
      D, jit::to_kerneltype(ctx.Attr<std::string>("gate_activation")),         \
      jit::to_kerneltype(ctx.Attr<std::string>("candidate_activation")),       \
      jit::to_kerneltype(ctx.Attr<std::string>("cell_activation")),            \
      use_peepholes);                                                          \
  jit::lstm_t one_step;                                                        \
  one_step.wp = wp_data;                                                       \
  one_step.checked = checked_cell_data;                                        \
  auto ComputeC1H1 =                                                           \
      jit::KernelFuncs<jit::LSTMC1H1Tuple<T>, platform::CPUPlace>::Cache().At( \
          attr);                                                               \
  auto ComputeCtHt =                                                           \
      jit::KernelFuncs<jit::LSTMCtHtTuple<T>, platform::CPUPlace>::Cache().At( \
          attr)
312 313

// Wh GEMM
T
tensor-tang 已提交
314 315 316 317
#define GEMM_WH_ADDON(bs, prev, out)                                           \
  blas.GEMM(CblasNoTrans, CblasNoTrans, bs, D4, D, static_cast<T>(1), prev, D, \
            wh_data, D4, static_cast<T>(1), out, D4)

T
tensor-tang 已提交
318
  void SeqCompute(const framework::ExecutionContext& ctx) const {
319 320
    INIT_BASE_DEFINES;
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
321
    auto x_lod = x->lod();
T
tensor-tang 已提交
322
    const int total_T = x_dims[0];
T
tensor-tang 已提交
323
    const int N = x_lod[0].size() - 1;
T
tensor-tang 已提交
324 325
    const T* h0_data = h0 ? h0->data<T>() : nullptr;
    const T* c0_data = c0 ? c0->data<T>() : nullptr;
T
tensor-tang 已提交
326
    T* xx_data = xx->mutable_data<T>(place);
T
tensor-tang 已提交
327 328
    T* h_out_data = hidden_out->mutable_data<T>(place);
    T* c_out_data = cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
329
    auto blas = math::GetBlas<DeviceContext, T>(ctx);
330 331 332 333

    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    math::FCFunctor<DeviceContext, T> fc;
    fc(dev_ctx, total_T, D4, M, x_data, wx_data, xx_data, bias->data<T>());
B
Brian Liu 已提交
334

T
tensor-tang 已提交
335 336 337 338 339
    int xx_offset = D4;
    int gate_offset = D;
    if (is_reverse) {
      const int offset = (total_T - 1) * D;
      xx_data = xx_data + offset * 4;
T
tensor-tang 已提交
340 341
      h_out_data = h_out_data + offset;
      c_out_data = c_out_data + offset;
T
tensor-tang 已提交
342 343 344 345
      xx_offset = -D4;
      gate_offset = -D;
    }

346 347 348 349 350 351 352 353 354 355
    for (int i = 0; i < N; ++i) {
      int bid = is_reverse ? N - 1 - i : i;
      int seq_len = x_lod[0][bid + 1] - x_lod[0][bid];
      const T* prev_c_data = nullptr;
      const T* prev_h_data = nullptr;
      int tstart = 0;
      if (h0_data) {
        prev_h_data = h0_data + bid * D;
        prev_c_data = c0_data + bid * D;
      } else {
356 357 358
        one_step.gates = xx_data;
        one_step.ct = c_out_data;
        one_step.ht = h_out_data;
359
        ComputeC1H1(&one_step, &attr);
360 361 362 363 364 365 366
        tstart = 1;
        // move one step
        prev_h_data = h_out_data;
        prev_c_data = c_out_data;
        xx_data = xx_data + xx_offset;
        h_out_data = h_out_data + gate_offset;
        c_out_data = c_out_data + gate_offset;
T
tensor-tang 已提交
367
      }
368 369
      for (int step = tstart; step < seq_len; ++step) {
        GEMM_WH_ADDON(1, prev_h_data, xx_data);
370 371 372 373 374

        one_step.gates = xx_data;
        one_step.ct_1 = prev_c_data;
        one_step.ct = c_out_data;
        one_step.ht = h_out_data;
375
        ComputeCtHt(&one_step, &attr);
376 377 378 379 380 381
        // move one step
        prev_h_data = h_out_data;
        prev_c_data = c_out_data;
        xx_data = xx_data + xx_offset;
        h_out_data = h_out_data + gate_offset;
        c_out_data = c_out_data + gate_offset;
T
tensor-tang 已提交
382
      }
T
tensor-tang 已提交
383
    }
T
tensor-tang 已提交
384 385 386
  }

  void BatchCompute(const framework::ExecutionContext& ctx) const {
387
    INIT_BASE_DEFINES;
T
tensor-tang 已提交
388
    if (x->lod()[0].size() == 2) {
389
      xx->Resize({x_dims[0], D4});
T
tensor-tang 已提交
390
      SeqCompute(ctx);
T
tensor-tang 已提交
391
      return;
T
tensor-tang 已提交
392
    }
393
    INIT_OTHER_DEFINES;
T
tensor-tang 已提交
394

T
tensor-tang 已提交
395 396 397 398 399 400 401 402 403 404 405
    auto* reordered_h0 = ctx.Output<Tensor>("ReorderedH0");
    auto* reordered_c0 = ctx.Output<Tensor>("ReorderedC0");
    auto* batched_input = ctx.Output<LoDTensor>("BatchedInput");
    auto* batched_c_out = ctx.Output<LoDTensor>("BatchedCell");
    auto* batched_h_out = ctx.Output<LoDTensor>("BatchedHidden");
    T* xx_data = xx->mutable_data<T>(place);
    T* batched_input_data = batched_input->mutable_data<T>(place);
    T* batched_c_out_data = batched_c_out->mutable_data<T>(place);
    T* batched_h_out_data = batched_h_out->mutable_data<T>(place);
    hidden_out->mutable_data<T>(place);
    cell_out->mutable_data<T>(place);
T
tensor-tang 已提交
406

T
tensor-tang 已提交
407
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
T
tensor-tang 已提交
408 409
    auto& dev_ctx = ctx.template device_context<DeviceContext>();
    auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
410
    math::FCFunctor<DeviceContext, T> fc;
T
tensor-tang 已提交
411
    if (M > D4) {
412
      fc(dev_ctx, x_dims[0], D4, M, x_data, wx_data, xx_data, bias->data<T>());
T
tensor-tang 已提交
413
      to_batch(dev_ctx, *xx, batched_input, true, is_reverse);
T
tensor-tang 已提交
414 415
    } else {
      to_batch(dev_ctx, *x, xx, true, is_reverse);
T
tensor-tang 已提交
416
      batched_input->set_lod(xx->lod());
417 418
      fc(dev_ctx, x_dims[0], D4, M, xx_data, wx_data, batched_input_data,
         bias->data<T>());
T
tensor-tang 已提交
419 420
    }

T
tensor-tang 已提交
421 422 423 424 425 426 427
    auto batched_lod = batched_input->lod();
    const auto& seq_order = batched_lod[2];
    const int max_bs = seq_order.size();
    reordered_h0->Resize({max_bs, D});
    reordered_c0->Resize({max_bs, D});

    int tstart = 0;
T
tensor-tang 已提交
428 429
    T* prev_h_data = nullptr;
    T* prev_c_data = nullptr;
T
tensor-tang 已提交
430 431 432 433 434 435
    if (h0) {
      // reorder h0, c0
      T* reordered_h0_data = reordered_h0->mutable_data<T>(place);
      T* reordered_c0_data = reordered_c0->mutable_data<T>(place);
      const T* h0_data = h0->data<T>();
      const T* c0_data = c0->data<T>();
T
tensor-tang 已提交
436 437
      prev_h_data = reordered_h0_data;
      prev_c_data = reordered_c0_data;
438
      size_t sz = D;
T
tensor-tang 已提交
439
      for (int i = 0; i < max_bs; ++i) {
440 441
        blas.VCOPY(sz, h0_data + seq_order[i] * D, reordered_h0_data);
        blas.VCOPY(sz, c0_data + seq_order[i] * D, reordered_c0_data);
T
tensor-tang 已提交
442 443 444 445
        reordered_h0_data += D;
        reordered_c0_data += D;
      }
    } else {
T
tensor-tang 已提交
446 447 448 449 450
      // compute without h0, c0
      T* cur_in_data = batched_input_data;
      T* cur_h_out_data = batched_h_out_data;
      T* cur_c_out_data = batched_c_out_data;
      for (int i = 0; i < max_bs; ++i) {
451 452 453
        one_step.gates = cur_in_data;
        one_step.ct = cur_c_out_data;
        one_step.ht = cur_h_out_data;
454
        ComputeC1H1(&one_step, &attr);
455

T
tensor-tang 已提交
456 457 458 459 460
        cur_in_data += D4;
        cur_c_out_data += D;
        cur_h_out_data += D;
      }
      tstart = 1;
T
tensor-tang 已提交
461 462
      prev_h_data = batched_h_out_data;
      prev_c_data = batched_c_out_data;
T
tensor-tang 已提交
463
    }
464 465

    // compute kernel part
T
tensor-tang 已提交
466 467
    const auto& batch_starts = batched_lod[0];
    const int max_seq_len = batch_starts.size() - 1;
T
tensor-tang 已提交
468 469 470 471
    const int offset = tstart * max_bs * D;
    batched_input_data = batched_input_data + offset * 4;
    batched_h_out_data = batched_h_out_data + offset;
    batched_c_out_data = batched_c_out_data + offset;
472 473 474 475 476 477 478 479
    for (int step = tstart; step < max_seq_len; ++step) {
      const int cur_bs = batch_starts[step + 1] - batch_starts[step];
      GEMM_WH_ADDON(cur_bs, prev_h_data, batched_input_data);
      T* cur_in_data = batched_input_data;
      T* cur_prev_c_data = prev_c_data;
      T* cur_c_out_data = batched_c_out_data;
      T* cur_h_out_data = batched_h_out_data;
      for (int i = 0; i < cur_bs; ++i) {
480 481 482 483
        one_step.gates = cur_in_data;
        one_step.ct_1 = cur_prev_c_data;
        one_step.ct = cur_c_out_data;
        one_step.ht = cur_h_out_data;
T
tensor-tang 已提交
484
        ComputeCtHt(&one_step, &attr);
485

486 487 488 489 490
        // move one batch
        cur_in_data += D4;
        cur_prev_c_data += D;
        cur_c_out_data += D;
        cur_h_out_data += D;
T
tensor-tang 已提交
491
      }
492 493 494 495 496 497
      // move one step
      prev_c_data = batched_c_out_data;
      prev_h_data = batched_h_out_data;
      batched_c_out_data = cur_c_out_data;
      batched_h_out_data = cur_h_out_data;
      batched_input_data = cur_in_data;
T
tensor-tang 已提交
498 499 500
    }

    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
T
tensor-tang 已提交
501 502 503 504
    batched_h_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_h_out, hidden_out);
    batched_c_out->set_lod(batched_lod);
    to_seq(dev_ctx, *batched_c_out, cell_out);
T
tensor-tang 已提交
505
  }
T
tensor-tang 已提交
506

T
tensor-tang 已提交
507
  void Compute(const framework::ExecutionContext& ctx) const override {
T
tensor-tang 已提交
508
    if (ctx.Attr<bool>("use_seq")) {
T
tensor-tang 已提交
509 510 511 512 513
      SeqCompute(ctx);
    } else {
      BatchCompute(ctx);
    }
  }
T
tensor-tang 已提交
514 515

#undef GEMM_WH_ADDON
516 517
#undef INIT_OTHER_DEFINES
#undef INIT_BASE_DEFINES
T
tensor-tang 已提交
518 519 520 521 522 523
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
524
REGISTER_OPERATOR(fusion_lstm, ops::FusionLSTMOp, ops::FusionLSTMOpMaker);
T
tensor-tang 已提交
525

T
tensor-tang 已提交
526 527
REGISTER_OP_CPU_KERNEL(fusion_lstm, ops::FuisonLSTMKernel<float>,
                       ops::FuisonLSTMKernel<double>);