test_conv3d_op.py 7.1 KB
Newer Older
C
chengduoZH 已提交
1 2
import unittest
import numpy as np
3 4

import paddle.v2.fluid.core as core
C
chengduoZH 已提交
5 6 7
from op_test import OpTest


8 9 10 11 12 13 14
def conv3d_forward_naive(input, filter, group, conv_param):
    in_n, in_c, in_d, in_h, in_w = input.shape
    out_c, f_c, f_d, f_h, f_w = filter.shape
    assert f_c * group == in_c
    assert np.mod(out_c, group) == 0
    sub_out_c = out_c / group

C
chengduoZH 已提交
15 16 17 18 19 20 21
    stride, pad, dilation = conv_param['stride'], conv_param['pad'], conv_param[
        'dilations']

    out_d = 1 + (in_d + 2 * pad[0] - (dilation[0] * (f_d - 1) + 1)) / stride[0]
    out_h = 1 + (in_h + 2 * pad[1] - (dilation[1] * (f_h - 1) + 1)) / stride[1]
    out_w = 1 + (in_w + 2 * pad[2] - (dilation[2] * (f_w - 1) + 1)) / stride[2]

22 23
    out = np.zeros((in_n, out_c, out_d, out_h, out_w))

C
chengduoZH 已提交
24 25 26 27
    d_bolck_d = (dilation[0] * (f_d - 1) + 1)
    d_bolck_h = (dilation[1] * (f_h - 1) + 1)
    d_bolck_w = (dilation[2] * (f_w - 1) + 1)

28 29 30 31
    input_pad = np.pad(input, ((0, ), (0, ), (pad[0], ), (pad[1], ),
                               (pad[2], )),
                       mode='constant',
                       constant_values=0)
C
chengduoZH 已提交
32 33 34 35 36

    filter_dilation = np.zeros((out_c, f_c, d_bolck_d, d_bolck_h, d_bolck_w))
    filter_dilation[:, :, 0:d_bolck_d:dilation[0], 0:d_bolck_h:dilation[1], 0:
                    d_bolck_w:dilation[2]] = filter

37 38 39 40 41 42
    for d in range(out_d):
        for i in range(out_h):
            for j in range(out_w):
                for g in range(group):
                    input_pad_masked = \
                        input_pad[:, g * f_c:(g + 1) * f_c,
C
chengduoZH 已提交
43 44 45 46 47 48
                        d * stride[0]:d * stride[0] + d_bolck_d,
                        i * stride[1]:i * stride[1] + d_bolck_h,
                        j * stride[2]:j * stride[2] + d_bolck_w]

                    f_sub = filter_dilation[g * sub_out_c:(g + 1) *
                                            sub_out_c, :, :, :, :]
49 50 51
                    for k in range(sub_out_c):
                        out[:, g * sub_out_c + k, d, i, j] = \
                            np.sum(input_pad_masked * f_sub[k, :, :, :, :],
C
chengduoZH 已提交
52
                                   axis=(1, 2, 3, 4))
53 54 55 56

    return out


C
chengduoZH 已提交
57 58
class TestConv3dOp(OpTest):
    def setUp(self):
59
        self.use_cudnn = False
60 61
        self.init_group()
        self.init_op_type()
C
chengduoZH 已提交
62
        self.init_dilation()
63 64
        self.init_test_case()

C
chengduoZH 已提交
65 66 67
        conv3d_param = {
            'stride': self.stride,
            'pad': self.pad,
68 69 70
            'dilations': self.dilations,
            'use_cudnn': self.use_cudnn,
            'data_format': 'AnyLayout'  # TODO(dzhwinter) : should be fix latter
C
chengduoZH 已提交
71
        }
72 73
        input = np.random.random(self.input_size).astype("float32")
        filter = np.random.random(self.filter_size).astype("float32")
C
chengduoZH 已提交
74 75
        output = conv3d_forward_naive(input, filter, self.groups,
                                      conv3d_param).astype("float32")
C
chengduoZH 已提交
76 77 78

        self.inputs = {'Input': input, 'Filter': filter}
        self.attrs = {
79 80
            'strides': self.stride,
            'paddings': self.pad,
C
chengduoZH 已提交
81 82
            'groups': self.groups,
            'dilations': self.dilations
C
chengduoZH 已提交
83 84 85 86
        }
        self.outputs = {'Output': output}

    def test_check_output(self):
87 88 89 90 91
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_output_with_place(place, atol=1e-5)
        else:
            self.check_output()
C
chengduoZH 已提交
92 93

    def test_check_grad(self):
94 95 96 97 98 99 100 101 102 103
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place,
                set(['Input', 'Filter']),
                'Output',
                max_relative_error=0.03)
        else:
            self.check_grad(
                set(['Input', 'Filter']), 'Output', max_relative_error=0.03)
C
chengduoZH 已提交
104

C
chengduoZH 已提交
105
    def test_check_grad_no_filter(self):
106 107 108 109 110 111 112 113 114 115 116 117 118
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
        else:
            self.check_grad(
                ['Input'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Filter']))
C
chengduoZH 已提交
119 120

    def test_check_grad_no_input(self):
121 122 123 124 125 126 127 128 129 130 131 132 133
        if self.use_cudnn:
            place = core.CUDAPlace(0)
            self.check_grad_with_place(
                place, ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
        else:
            self.check_grad(
                ['Filter'],
                'Output',
                max_relative_error=0.03,
                no_grad_set=set(['Input']))
C
chengduoZH 已提交
134

135 136 137
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
138
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
139 140 141 142
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3, 3]

C
chengduoZH 已提交
143 144 145
    def init_dilation(self):
        self.dilations = [1, 1, 1]

146
    def init_group(self):
C
chengduoZH 已提交
147 148
        self.groups = 1

149 150 151
    def init_op_type(self):
        self.op_type = "conv3d"

C
chengduoZH 已提交
152

C
chengduoZH 已提交
153 154 155 156
class TestCase1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [1, 1, 1]
        self.stride = [1, 1, 1]
C
chengduoZH 已提交
157
        self.input_size = [2, 3, 4, 4, 4]  # NCDHW
C
chengduoZH 已提交
158 159 160 161 162
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 3, 3, 3]


C
chengduoZH 已提交
163 164 165
class TestWithGroup1(TestConv3dOp):
    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
166 167


C
chengduoZH 已提交
168
class TestWithGroup2(TestCase1):
169
    def init_group(self):
C
chengduoZH 已提交
170 171
        self.groups = 3

172

C
chengduoZH 已提交
173 174 175 176 177 178 179 180 181 182 183
class TestWith1x1(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 4, 4, 4]  # NCHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 1, 1, 1]

    def init_dilation(self):
        self.dilations = [1, 1, 1]
C
chengduoZH 已提交
184

C
chengduoZH 已提交
185 186 187
    def init_group(self):
        self.groups = 3

C
chengduoZH 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202

class TestWithDilation(TestConv3dOp):
    def init_test_case(self):
        self.pad = [0, 0, 0]
        self.stride = [1, 1, 1]
        self.input_size = [2, 3, 6, 6, 6]  # NCDHW
        assert np.mod(self.input_size[1], self.groups) == 0
        f_c = self.input_size[1] / self.groups
        self.filter_size = [6, f_c, 2, 2, 2]

    def init_dilation(self):
        self.dilations = [2, 2, 2]

    def init_group(self):
        self.groups = 3
C
chengduoZH 已提交
203

C
chengduoZH 已提交
204

205
class TestCUDNN(TestConv3dOp):
武毅 已提交
206
    def init_op_type(self):
207 208
        self.use_cudnn = True
        self.op_type = "conv3d"
武毅 已提交
209 210


211
class TestWithGroup1CUDNN(TestWithGroup1):
武毅 已提交
212
    def init_op_type(self):
213 214
        self.use_cudnn = True
        self.op_type = "conv3d"
武毅 已提交
215 216


217
class TestWithGroup2CUDNN(TestWithGroup2):
武毅 已提交
218
    def init_op_type(self):
219 220
        self.use_cudnn = True
        self.op_type = "conv3d"
武毅 已提交
221 222


223
class TestWith1x1CUDNN(TestWith1x1):
武毅 已提交
224
    def init_op_type(self):
225 226
        self.use_cudnn = True
        self.op_type = "conv3d"
武毅 已提交
227 228 229 230


# FIXME(typhoonzero): find a way to determine if
# using cudnn > 6 in python
231
# class TestWithDilationCUDNN(TestWithDilation):
武毅 已提交
232
#     def init_op_type(self):
233
#         self.op_type = "conv3d"
武毅 已提交
234

C
chengduoZH 已提交
235 236
if __name__ == '__main__':
    unittest.main()