op_test.py 19.4 KB
Newer Older
1 2
import unittest
import numpy as np
3
import random
4
import itertools
Q
Qiao Longfei 已提交
5
import paddle.v2.fluid.core as core
Y
Yu Yang 已提交
6
import collections
F
fengjiayi 已提交
7
from paddle.v2.fluid.backward import append_backward
Q
Qiao Longfei 已提交
8 9 10
from paddle.v2.fluid.op import Operator
from paddle.v2.fluid.executor import Executor
from paddle.v2.fluid.framework import Program, OpProtoHolder
11 12


13 14 15 16 17 18 19 20 21
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
    for i in xrange(len(prob)):
        prob[i] /= prob_sum[i]
    return prob


Q
qijun 已提交
22
def create_op(scope, op_type, inputs, outputs, attrs):
23 24
    kwargs = dict()

Y
Yu Yang 已提交
25
    def __create_var__(name, var_name):
Q
QI JUN 已提交
26
        scope.var(var_name).get_tensor()
Y
Yu Yang 已提交
27 28
        kwargs[name].append(var_name)

Q
qijun 已提交
29
    for in_name, in_dup in Operator.get_op_inputs(op_type):
30 31 32 33
        if in_name in inputs:
            kwargs[in_name] = []
            if in_dup:
                sub_in = inputs[in_name]
34 35
                for item in sub_in:
                    sub_in_name, _ = item[0], item[1]
Y
Yu Yang 已提交
36
                    __create_var__(in_name, sub_in_name)
37
            else:
Y
Yu Yang 已提交
38
                __create_var__(in_name, in_name)
39

Q
qijun 已提交
40
    for out_name, out_dup in Operator.get_op_outputs(op_type):
41 42 43
        if out_name in outputs:
            kwargs[out_name] = []
            if out_dup:
44
                sub_out = outputs[out_name]
45 46
                for item in sub_out:
                    sub_out_name, _ = item[0], item[1]
Y
Yu Yang 已提交
47
                    __create_var__(out_name, sub_out_name)
48
            else:
Y
Yu Yang 已提交
49
                __create_var__(out_name, out_name)
50

Q
qijun 已提交
51
    for attr_name in Operator.get_op_attr_names(op_type):
Q
qijun 已提交
52 53
        if attr_name in attrs:
            kwargs[attr_name] = attrs[attr_name]
54

55 56 57 58
    return Operator(op_type, **kwargs)


def set_input(scope, op, inputs, place):
Y
Yu Yang 已提交
59
    def __set_input__(var_name, var):
60 61 62 63 64 65 66 67 68 69 70
        if isinstance(var, tuple) or isinstance(var, np.ndarray):
            tensor = scope.find_var(var_name).get_tensor()
            if isinstance(var, tuple):
                tensor.set_lod(var[1])
                var = var[0]
            tensor.set_dims(var.shape)
            tensor.set(var, place)
        elif isinstance(var, float):
            scope.find_var(var_name).set_float(var)
        elif isinstance(var, int):
            scope.find_var(var_name).set_int(var)
Y
Yu Yang 已提交
71

Q
qijun 已提交
72
    for in_name, in_dup in Operator.get_op_inputs(op.type()):
73 74 75
        if in_name in inputs:
            if in_dup:
                sub_in = inputs[in_name]
76 77
                for item in sub_in:
                    sub_in_name, sub_in_val = item[0], item[1]
Y
Yu Yang 已提交
78
                    __set_input__(sub_in_name, sub_in_val)
79
            else:
Y
Yu Yang 已提交
80
                __set_input__(in_name, inputs[in_name])
81 82


83 84
def get_numeric_gradient(place,
                         scope,
85 86 87
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
88
                         output_names,
89 90
                         delta=0.005,
                         in_place=False):
Y
Yu Yang 已提交
91
    # FIXME: change this method by compile time concepts
92
    set_input(scope, op, inputs, place)
93 94 95 96 97

    def product(dim):
        return reduce(lambda a, b: a * b, dim, 1)

    def get_output():
Y
Yu Yang 已提交
98
        sum = []
Y
Yancey 已提交
99
        for output_name in output_names:
100
            op.run(scope, place)
Y
Yu Yang 已提交
101 102 103
            sum.append(
                np.array(scope.find_var(output_name).get_tensor()).mean())
        return np.array(sum).mean()
104 105 106

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
    tensor_size = product(tensor_to_check.get_dims())
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
    tensor_to_check_dtype = tensor_to_check.dtype()
    if tensor_to_check_dtype == core.DataType.FP32:
        tensor_to_check_dtype = np.float32
    elif tensor_to_check_dtype == core.DataType.FP64:
        tensor_to_check_dtype = np.float64
    else:
        raise ValueError("Not supported data type " + str(
            tensor_to_check_dtype))

    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
        if tensor_to_check_dtype == np.float32:
            return tensor.get_float_element(i)
        else:
            return tensor.get_double_element(i)

    def __set_elem__(tensor, i, e):
        if tensor_to_check_dtype == np.float32:
            tensor.set_float_element(i, e)
        else:
            tensor.set_double_element(i, e)

130 131 132 133
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
    for i in xrange(tensor_size):
        if in_place:
134
            set_input(scope, op, inputs, place)
135 136

        # get one input element throw it's index i.
137
        origin = __get_elem__(tensor_to_check, i)
138 139
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
140
        __set_elem__(tensor_to_check, i, x_pos)
141 142 143
        y_pos = get_output()

        if in_place:
144
            set_input(scope, op, inputs, place)
145 146

        x_neg = origin - delta
147
        __set_elem__(tensor_to_check, i, x_neg)
148 149
        y_neg = get_output()

150
        __set_elem__(tensor_to_check, i, origin)
151 152 153 154 155
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

    return gradient_flat.reshape(tensor_to_check.get_dims())


Y
Yang Yang(Tony) 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
def append_input_output(block, op_proto, np_list, is_input):
    '''Insert VarDesc and generate Python variable instance'''
    proto_list = op_proto.inputs if is_input else op_proto.outputs

    def create_var(block, name, np_list, var_proto):
        if name not in np_list:
            assert var_proto.intermediate, "{} not found".format(name)
            shape = None
            lod_level = None
        else:
            np_value = np_list[name]
            if isinstance(np_value, tuple):
                shape = list(np_value[0].shape)
                lod_level = len(np_value[1])
            else:
                shape = list(np_value.shape)
                lod_level = 0
        return block.create_var(
            dtype="float32", shape=shape, lod_level=lod_level, name=name)

    var_dict = {}
    for var_proto in proto_list:
        var_name = str(var_proto.name)
        if is_input:
            if (var_name not in np_list) and var_proto.dispensable:
                continue
            assert (var_name in np_list) or (var_proto.dispensable), \
183
                "Missing {} as input".format(var_name)
Y
Yang Yang(Tony) 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197
        if var_proto.duplicable:
            assert isinstance(np_list[var_name], list), \
                "Duplicable {} should be set as list".format(var_name)
            var_list = []
            for (name, np_value) in np_list[var_name]:
                var_list.append(
                    create_var(block, name, {name: np_value}, var_proto))
            var_dict[var_name] = var_list
        else:
            var_dict[var_name] = create_var(block, var_name, np_list, var_proto)

    return var_dict


198
class OpTest(unittest.TestCase):
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()

        np.random.seed(123)
        random.seed(124)

    @classmethod
    def tearDownClass(cls):
        '''Restore random seeds'''
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

Y
Yang Yang(Tony) 已提交
214 215 216 217 218 219
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
220 221 222 223 224
                    if isinstance(np_value, tuple):
                        tensor.set(np_value[0], place)
                        tensor.set_lod(np_value[1])
                    else:
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
225 226 227 228 229 230 231 232 233 234 235 236
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
                    tensor.set(self.inputs[var_name][0], place)
                    tensor.set_lod(self.inputs[var_name][1])
                else:
                    tensor.set(self.inputs[var_name], place)
                feed_map[var_name] = tensor

        return feed_map

237
    def check_output_with_place(self, place, atol):
Y
Yang Yang(Tony) 已提交
238 239 240 241 242 243 244 245 246 247 248 249
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

        program = Program()
        block = program.global_block()

        inputs = append_input_output(block, op_proto, self.inputs, True)
        outputs = append_input_output(block, op_proto, self.outputs, False)
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=self.attrs if hasattr(self, "attrs") else dict())
Q
QI JUN 已提交
250 251 252
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265

        fetch_list = []
        for var_name, var in outputs.iteritems():
            if var_name in self.outputs:
                if isinstance(var, list):
                    for v in var:
                        fetch_list.append(v)
                else:
                    fetch_list.append(var)

        feed_map = self.feed_var(inputs, place)

        exe = Executor(place)
D
dzhwinter 已提交
266 267 268 269
        outs = exe.run(program,
                       feed=feed_map,
                       fetch_list=fetch_list,
                       return_numpy=False)
Y
Yang Yang(Tony) 已提交
270 271

        for out_name, out_dup in Operator.get_op_outputs(self.op_type):
272 273 274
            if out_name not in self.outputs:
                continue

Y
Yang Yang(Tony) 已提交
275 276 277 278 279 280 281 282 283 284
            def find_actual(target_name, fetch_list):
                found = [
                    i for i, var in enumerate(fetch_list)
                    if var.name == target_name
                ]
                self.assertTrue(
                    len(found) == 1, "Found {} {}".format(
                        len(found), target_name))
                return found[0]

285 286
            if out_dup:
                sub_out = self.outputs[out_name]
Y
Yancey 已提交
287 288 289
                if not isinstance(sub_out, list):
                    raise AssertionError("sub_out type %s is not list",
                                         type(sub_out))
290 291
                for item in sub_out:
                    sub_out_name, expect = item[0], item[1]
Y
Yang Yang(Tony) 已提交
292
                    idx = find_actual(sub_out_name, fetch_list)
Q
QI JUN 已提交
293 294
                    actual = outs[idx]
                    actual_t = np.array(actual)
295 296
                    expect_t = expect[0] \
                        if isinstance(expect, tuple) else expect
297 298
                    self.assertTrue(
                        np.allclose(
299
                            actual_t, expect_t, atol=atol),
Y
Yang Yang(Tony) 已提交
300 301
                        "Output (" + sub_out_name + ") has diff at " +
                        str(place))
302 303
                    if isinstance(expect, tuple):
                        self.assertListEqual(
Q
QI JUN 已提交
304 305
                            actual.lod(), expect[1], "Output (" + sub_out_name +
                            ") has different lod at " + str(place))
306
            else:
Y
Yang Yang(Tony) 已提交
307
                idx = find_actual(out_name, fetch_list)
Q
QI JUN 已提交
308 309
                actual = outs[idx]
                actual_t = np.array(actual)
310
                expect = self.outputs[out_name]
311
                expect_t = expect[0] if isinstance(expect, tuple) else expect
312 313
                self.assertTrue(
                    np.allclose(
314
                        actual_t, expect_t, atol=atol),
D
dangqingqing 已提交
315
                    "Output (" + out_name + ") has diff at " + str(place))
316
                if isinstance(expect, tuple):
Q
QI JUN 已提交
317
                    self.assertListEqual(actual.lod(), expect[1],
318 319
                                         "Output (" + out_name +
                                         ") has different lod at " + str(place))
320

321
    def check_output(self, atol=1e-5):
Q
qijun 已提交
322
        places = [core.CPUPlace()]
Y
Yang Yang(Tony) 已提交
323
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
D
dzhwinter 已提交
324
            places.append(core.CUDAPlace(0))
Q
qijun 已提交
325
        for place in places:
326
            self.check_output_with_place(place, atol)
Q
qijun 已提交
327

328 329 330 331 332 333 334 335 336 337 338 339
    def __assert_is_close(self, numeric_grads, analytic_grads, names,
                          max_relative_error, msg_prefix):

        for a, b, name in itertools.izip(numeric_grads, analytic_grads, names):
            abs_a = np.abs(a)
            abs_a[abs_a < 1e-3] = 1

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
340
                return ("%s Variable %s max gradient diff %f over limit %f, "
341
                        "the first error element is %d, %f, %f") % (
342
                            msg_prefix, name, max_diff, max_relative_error,
343
                            offset, a.flatten()[offset], b.flatten()[offset])
344 345 346 347 348

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
349
                   output_names,
350
                   no_grad_set=None,
351
                   numeric_grad_delta=0.005,
352
                   in_place=False,
Q
Qiao Longfei 已提交
353 354
                   max_relative_error=0.005,
                   user_defined_grads=None):
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
        places = [core.CPUPlace()]
        if core.is_compile_gpu() and core.op_support_gpu(self.op_type):
            places.append(core.CUDAPlace(0))
        for place in places:
            self.check_grad_with_place(place, inputs_to_check, output_names,
                                       no_grad_set, numeric_grad_delta,
                                       in_place, max_relative_error,
                                       user_defined_grads)

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
                              user_defined_grads=None):
373
        self.scope = core.Scope()
Q
qijun 已提交
374
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
375
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
376
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
377
        self.op = create_op(self.scope, self.op_type, op_inputs, op_outputs,
Q
qijun 已提交
378
                            op_attrs)
Y
Yu Yang 已提交
379

380 381 382
        if no_grad_set is None:
            no_grad_set = set()

Y
Yancey 已提交
383 384 385
        if not type(output_names) is list:
            output_names = [output_names]

Q
Qiao Longfei 已提交
386
        numeric_grads = user_defined_grads or [
387
            get_numeric_gradient(
388
                place,
389 390 391 392
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
393
                output_names,
394
                delta=numeric_grad_delta,
395 396
                in_place=in_place) for input_to_check in inputs_to_check
        ]
397 398 399 400 401 402
        analytic_grads = self._get_gradient(inputs_to_check, place,
                                            output_names, no_grad_set)

        self.__assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                               max_relative_error,
                               "Gradient Check On %s" % str(place))
Q
qijun 已提交
403

Y
Yu Yang 已提交
404 405 406 407 408 409 410 411 412 413 414 415 416 417
    @staticmethod
    def _create_var_descs_(block, var_dict):
        # FIXME: Try unify with `append_input_output`
        for param_name in var_dict:
            var = var_dict[param_name]
            if not isinstance(var, list) and not isinstance(var, tuple):
                var = [(param_name, var, None)]
            if not isinstance(var[0], list) and not isinstance(var[0], tuple):
                var = [(param_name, var[0], var[1])]

            for i, item in enumerate(var):
                if not isinstance(item[0], basestring):
                    item = [[param_name] + list(item)]
                if len(item) == 2:
418 419 420 421 422
                    if isinstance(item[1], tuple):
                        var[i] = [item[0], item[1][0], item[1][1]]
                    else:
                        # only set var name and value, set lod to None
                        var[i] = list(item) + [None]
Y
Yu Yang 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
            var_descs = [(block.create_var(
                name=name, shape=each.shape, dtype=each.dtype), each, lod)
                         for name, each, lod in var]

            yield param_name, var_descs

    @staticmethod
    def _merge_list(iterable):
        return reduce(lambda a, b: list(a) + list(b), iterable, [])

    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
            tensor.set_lod(lod)
        return tensor

    def _get_gradient(self, input_to_check, place, output_names, no_grad_set):
        prog = Program()
        block = prog.global_block()
        inputs_with_np = {
            key: value
            for (key, value) in OpTest._create_var_descs_(
                block, getattr(self, 'inputs', {}))
        }
        outputs_with_np = {
            key: val
            for (key, val) in OpTest._create_var_descs_(
                block, getattr(self, 'outputs', {}))
        }
        inputs = {
            k: [item[0] for item in inputs_with_np[k]]
            for k in inputs_with_np
        }
        outputs = {
            k: [item[0] for item in outputs_with_np[k]]
            for k in outputs_with_np
        }

Q
QI JUN 已提交
463
        op = block.append_op(
Y
Yu Yang 已提交
464 465 466 467 468
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
            attrs=getattr(self, 'attrs', {}))

Q
QI JUN 已提交
469 470 471 472
        # infer variable type and infer shape in compile-time
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)

Y
Yu Yang 已提交
473 474 475
        mean_inputs = map(block.var, output_names)

        if len(mean_inputs) == 1:
F
fengjiayi 已提交
476
            loss = block.create_var(dtype=mean_inputs[0].dtype, shape=[1])
Q
QI JUN 已提交
477
            op = block.append_op(
Y
Yu Yang 已提交
478
                inputs={"X": mean_inputs}, outputs={"Out": loss}, type='mean')
Q
QI JUN 已提交
479 480
            op.desc.infer_var_type(block.desc)
            op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
481 482 483
        else:
            avg_sum = []
            for cur_loss in mean_inputs:
F
fengjiayi 已提交
484
                cur_avg_loss = block.create_var(dtype=cur_loss.dtype, shape=[1])
Q
QI JUN 已提交
485
                op = block.append_op(
Y
Yu Yang 已提交
486 487 488
                    inputs={"X": [cur_loss]},
                    outputs={"Out": [cur_avg_loss]},
                    type="mean")
Q
QI JUN 已提交
489 490
                op.desc.infer_var_type(block.desc)
                op.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
491 492
                avg_sum.append(cur_avg_loss)

F
fengjiayi 已提交
493
            loss_sum = block.create_var(dtype=avg_sum[0].dtype, shape=[1])
Q
QI JUN 已提交
494
            op_sum = block.append_op(
Y
Yu Yang 已提交
495
                inputs={"X": avg_sum}, outputs={"Out": loss_sum}, type='sum')
Q
QI JUN 已提交
496 497
            op_sum.desc.infer_var_type(block.desc)
            op_sum.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
498

F
fengjiayi 已提交
499
            loss = block.create_var(dtype=loss_sum.dtype, shape=[1])
Q
QI JUN 已提交
500
            op_loss = block.append_op(
Y
Yu Yang 已提交
501 502 503 504
                inputs={"X": loss_sum},
                outputs={"Out": loss},
                type='scale',
                attrs={'scale': 1.0 / float(len(avg_sum))})
Q
QI JUN 已提交
505 506
            op_loss.desc.infer_var_type(block.desc)
            op_loss.desc.infer_shape(block.desc)
Y
Yu Yang 已提交
507

F
fengjiayi 已提交
508
        param_grad_list = append_backward(
Y
Yu Yang 已提交
509 510 511 512 513 514 515 516 517
            loss=loss, parameter_list=input_to_check, no_grad_set=no_grad_set)

        feed_dict = {
            item[0].name: OpTest._numpy_to_lod_tensor(item[1], item[2], place)
            for p_name in inputs_with_np for item in inputs_with_np[p_name]
        }

        fetch_list = [g for p, g in param_grad_list]
        executor = Executor(place)
D
dzhwinter 已提交
518 519 520
        return map(
            np.array,
            executor.run(prog, feed_dict, fetch_list, return_numpy=False))