sgd_kernel.cc 6.8 KB
Newer Older
P
phlrain 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/sgd_kernel.h"
#include "paddle/fluid/operators/jit/kernels.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"

namespace phi {

template <typename T>
void sgd_dense_param_dense_grad_impl(const DenseTensor& param,
                                     const DenseTensor& learning_rate,
                                     const DenseTensor& grad,
                                     DenseTensor* param_out) {
  const auto sz = param_out->numel();
  paddle::operators::jit::sgd_attr_t attr(1, sz, 1, sz, 1);
  const T* lr = learning_rate.data<T>();
  const T* param_data = param.data<T>();
  const T* grad_data = grad.data<T>();
  int64_t rows_idx = 0;
  T* out_data = param_out->data<T>();

  auto sgd =
      paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>,
                                          phi::CPUPlace>::Cache()
          .At(attr);
  sgd(lr, param_data, grad_data, &rows_idx, out_data, &attr);
}

template <>
void sgd_dense_param_dense_grad_impl<phi::dtype::bfloat16>(
    const DenseTensor& param,
    const DenseTensor& learning_rate,
    const DenseTensor& grad,
    DenseTensor* param_out) {
  auto p = EigenVector<phi::dtype::bfloat16>::Flatten(param);
  auto g = EigenVector<phi::dtype::bfloat16>::Flatten(grad);
  auto o = EigenVector<phi::dtype::bfloat16>::Flatten(*param_out);
  const auto* lr = learning_rate.data<phi::dtype::bfloat16>();

  o = p - lr[0] * g;
}

template <typename T>
void sgd_dense_param_sparse_grad_impl(const DenseTensor& param,
                                      const DenseTensor& learning_rate,
                                      const SelectedRows& grad,
                                      DenseTensor* param_out) {
  const auto& grad_value = grad.value();
  const auto& grad_rows = grad.rows();
  const T* param_data = param.data<T>();
  const T* grad_data = grad_value.data<T>();
  const T* lr = learning_rate.data<T>();
  const int64_t* rows_data = grad_rows.data();
  T* out_data = param_out->data<T>();

  paddle::operators::jit::sgd_attr_t attr;
  attr.param_height = param_out->dims()[0];
  attr.param_width = param_out->numel() / attr.param_height;
  attr.grad_height = grad_rows.size();  // note: it is not grad->height()
  attr.grad_width = grad_value.numel() / attr.grad_height;
  attr.selected_rows_size = grad_rows.size();

  auto sgd =
      paddle::operators::jit::KernelFuncs<paddle::operators::jit::SgdTuple<T>,
                                          phi::CPUPlace>::Cache()
          .At(attr);
  sgd(lr, param_data, grad_data, rows_data, out_data, &attr);
}

template <>
void sgd_dense_param_sparse_grad_impl<phi::dtype::bfloat16>(
    const DenseTensor& param,
    const DenseTensor& learning_rate,
    const SelectedRows& grad,
    DenseTensor* param_out) {
  const auto& grad_value = grad.value();
  const auto& grad_rows = grad.rows();
  const auto grad_height = grad.height();
  const int64_t grad_val_height = static_cast<int64_t>(grad_rows.size());
  const auto grad_width = grad_value.numel() / grad_val_height;

  const auto* grad_data = grad_value.data<phi::dtype::bfloat16>();
  auto* out_data = param_out->data<phi::dtype::bfloat16>();
  const auto* lr = learning_rate.data<phi::dtype::bfloat16>();

  for (size_t i = 0; i < grad_rows.size(); ++i) {
    PADDLE_ENFORCE_LT(
        grad_rows[i],
        grad_height,
        phi::errors::OutOfRange(
            "Grad rows index value should be less than grad height."
            "Got [%s], but expected less than [%s]",
            grad_rows[i],
            grad_height));
    const int64_t row = grad_rows[i];
    for (int64_t j = 0; j < grad_width; ++j) {
      out_data[row * grad_width + j] -= lr[0] * grad_data[i * grad_width + j];
    }
  }
}

template <typename T, typename Context>
void SGDKernel(const Context& dev_ctx,
               const DenseTensor& param,
               const DenseTensor& learning_rate,
               const DenseTensor& grad,
               const DenseTensor& master_param,
               bool multi_precision,
               DenseTensor* param_out,
               DenseTensor* master_param_out) {
  dev_ctx.template Alloc<T>(param_out);
  sgd_dense_param_dense_grad_impl<T>(param, learning_rate, grad, param_out);
}

template <typename T, typename Context>
void SGDKernel(const Context& dev_ctx,
               const DenseTensor& param,
               const DenseTensor& learning_rate,
               const SelectedRows& grad,
               const DenseTensor& master_param,
               bool multi_precision,
               DenseTensor* param_out,
               DenseTensor* master_param_out) {
  dev_ctx.template Alloc<T>(param_out);
  sgd_dense_param_sparse_grad_impl<T>(param, learning_rate, grad, param_out);
}

template <typename T, typename Context>
void SGDKernel(const Context& dev_ctx,
               const SelectedRows& param,
               const DenseTensor& learning_rate,
               const SelectedRows& grad,
               const SelectedRows& master_param,
               bool multi_precision,
               SelectedRows* param_out,
               SelectedRows* master_param_out) {
  // for distributed training, a sparse var may be empty,
  // just skip updating.
  if (grad.rows().size() == 0) {
    return;
  }

  auto param_row_width = param.value().dims()[1];
  auto grad_row_width = grad.value().dims()[1];
  PADDLE_ENFORCE_EQ(
      param_row_width,
      grad_row_width,
      phi::errors::InvalidArgument(
          "The param_row in SgdOP should have the same size with grad_row. "
          "But received param_row's width is [%s], and grad_row's width is "
          "[%s]",
          param_row_width,
          grad_row_width));

  const auto* lr = learning_rate.data<T>();
  const auto* grad_data = grad.value().data<T>();
  auto* out_data = param_out->mutable_value()->data<T>();
  for (size_t i = 0; i < grad.rows().size(); i++) {
    int64_t id_index = param_out->AutoGrownIndex(grad.rows()[i], false);
    PADDLE_ENFORCE_GE(
        id_index,
        static_cast<int64_t>(0),
        phi::errors::InvalidArgument(
            "The id in SgdOp should be >= 0. But recevied id_index is [%s]",
            id_index));
    for (int64_t j = 0; j < grad_row_width; j++) {
      out_data[id_index * grad_row_width + j] -=
          lr[0] * grad_data[i * grad_row_width + j];
    }
  }
}

}  // namespace phi