utils.py 13.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
J
JZ-LIANG 已提交
14
import paddle
15 16 17 18 19 20
from paddle.fluid import core
from functools import reduce
from paddle.distributed.fleet.meta_optimizers.common import is_loss_grad_op
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY

import re
J
JZ-LIANG 已提交
21
import os
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129


def check_broadcast(block):
    """
    if a var is broadcasted, it should have a sync_comm before
    this var is used, if not, raise error.
    if the broadcasted var has a fill_constant op, the fill_constant
    op should stay forward before the broadcast op, and before a
    sync_calc op. Otherwise, raise error.
    """
    broadcast_vars = {}
    for idx, op in enumerate(block.ops):
        if op.type == "c_broadcast":
            var_name = op.desc.input_arg_names()[0]
            if "@BroadCast" in var_name:
                if var_name in broadcast_vars:
                    raise ValueError("var_name areadly exist: {}"
                                     "the old pos is {}, the new pos is {}".
                                     format(var_name, broadcast_vars[var_name][
                                         "broadcast_pos"], idx))
                broadcast_vars[var_name] = {
                    "fill_constant_pos": -1,
                    "broadcast_pos": idx,
                }

    for idx, op in enumerate(block.ops):
        if op.type == "fill_constant":
            var_name = op.desc.output_arg_names()[0]
            if var_name in broadcast_vars:
                broadcast_vars[var_name]["fill_constant_pos"] = idx
            continue

    last_sync_comm_op_idx = -1
    last_sync_calc_op_idx = -1
    for idx, op in enumerate(block.ops):
        if op.type == "c_sync_comm_stream":
            last_sync_comm_op_idx = idx
            continue
        if op.type == "c_sync_calc_stream":
            last_sync_calc_op_idx = idx
            continue
        if op.type == "c_broadcast":
            var_name = op.desc.input_arg_names()[0]
            if "@BroadCast" in var_name:
                if broadcast_vars[var_name]["fill_constant_pos"] != -1:
                    assert (last_sync_calc_op_idx != -1)
                    assert (broadcast_vars[var_name]["fill_constant_pos"] <
                            last_sync_calc_op_idx)
                    assert (last_sync_calc_op_idx < idx)
                continue
        for input_name in op.desc.input_arg_names():
            if input_name in broadcast_vars:
                assert (broadcast_vars[input_name]["broadcast_pos"] != -1)
                assert (broadcast_vars[input_name]["broadcast_pos"] <
                        last_sync_comm_op_idx)
                assert (last_sync_comm_op_idx < idx)
    return


def check_allreduce_sum(block):
    """
    if a Var is allreduced, the op order should be:
        - 0: op that generate Var
        - 1: sync_calc
        - 2: allreduce_sum op
        - 3: sync_comm
        - 4: op that use Var
    """
    var_status = {}
    for op in block.ops:
        if op.type == "c_allreduce_sum":
            var_name = op.desc.input_arg_names()[0]
            var_status[var_name] = -1

    for op in block.ops:
        if op.type == "c_sync_calc_stream":
            for var_name in var_status:
                if var_name in var_status and var_status[var_name] == 0:
                    var_status[var_name] = 1
        elif op.type == "c_allreduce_sum":
            var_name = op.desc.input_arg_names()[0]
            if var_status[var_name] == -1:
                raise ValueError("{} is not generated, but you are"
                                 "trying to all-reduce it".format(var_name))
            if var_status[var_name] == 0:
                raise ValueError("There should be a sync_calc op "
                                 "after generate Var: {} and before the"
                                 "c_allreduce_sum op".format(var_name))
            assert (var_status[var_name] == 1)
            var_status[var_name] = 2
        elif op.type == "c_sync_comm_stream":
            for var_name in op.desc.input_arg_names():
                if var_name in var_status and var_status[var_name] == 2:
                    var_status[var_name] = 3
        else:
            for input_name in op.desc.input_arg_names():
                if input_name in var_status:
                    if var_status[input_name] != 3:
                        raise ValueError("There should be a sync_comm op "
                                         "after allreduce the Var: {}".format(
                                             var_name))
            for output_name in op.desc.output_arg_names():
                if output_name in var_status and \
                    var_status[output_name] == -1:
                    var_status[output_name] = 0
    return


J
JZ-LIANG 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143
def get_valid_op_role(block, insert_idx):
    """
    return OpRole.Forward or OpRole.Backward
    """
    op_role = block.ops[insert_idx].attr('op_role')
    if (insert_idx >= len(block.ops)) or (
            op_role in [int(OpRole.Backward), int(OpRole.Optimize)]):
        return OpRole.Backward
    if op_role in [int(OpRole.Forward), int(OpRole.Loss)]:
        return OpRole.Forward

    return get_valid_op_role(block, insert_idx + 1)


144 145 146 147
def insert_sync_calc_op(block, insert_idx, calc_dep_vars):
    """
    _insert_sync_calc_op
    """
J
JZ-LIANG 已提交
148
    op_role = get_valid_op_role(block, insert_idx)
149 150 151 152 153 154 155 156 157 158 159 160 161
    block._insert_op_without_sync(
        insert_idx,
        type='c_sync_calc_stream',
        inputs={'X': calc_dep_vars},
        outputs={'Out': calc_dep_vars},
        attrs={OP_ROLE_KEY: op_role})
    return


def insert_sync_comm_ops(block, insert_idx, nrings, comm_dep_vars):
    """
    _insert_sync_comm_ops
    """
J
JZ-LIANG 已提交
162
    op_role = get_valid_op_role(block, insert_idx)
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    for i in range(nrings):
        block._insert_op_without_sync(
            insert_idx,
            type='c_sync_comm_stream',
            inputs={'X': comm_dep_vars},
            outputs={'Out': comm_dep_vars},
            attrs={'ring_id': i,
                   OP_ROLE_KEY: op_role})
    return nrings


def insert_fill_constant_ops(block, insert_idx, fill_constant_vars):
    """
    _add_fill_constant_ops
    """
J
JZ-LIANG 已提交
178
    op_role = get_valid_op_role(block, insert_idx)
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    for broadcast_name in fill_constant_vars:
        broadcast_var = block.var(broadcast_name)
        block._insert_op_without_sync(
            insert_idx,
            type="fill_constant",
            outputs={"Out": broadcast_var.name},
            attrs={
                "shape": broadcast_var.shape,
                "dtype": broadcast_var.dtype,
                "value": 0.0,
                OP_ROLE_KEY: op_role
            })
    return


def insert_cast_ops(block, insert_idx, cast_ops):
    """
    _add_cast_ops
    """
J
JZ-LIANG 已提交
198
    op_role = get_valid_op_role(block, insert_idx)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    for fp16_name, fp32_name in cast_ops.items():
        block._insert_op_without_sync(
            insert_idx,
            type="cast",
            inputs={"X": fp32_name},
            outputs={"Out": fp16_name},
            attrs={
                "in_dtype": core.VarDesc.VarType.FP32,
                "out_dtype": core.VarDesc.VarType.FP16,
                OP_ROLE_KEY: op_role
            })
    return


def insert_allreduce_ops(block, insert_idx, nrings, allreduce_vars):
    """
    _add_allreduce_ops
    """
    ring_id = -1
    for var in allreduce_vars:
        ring_id = (ring_id + 1) % nrings
        block._insert_op_without_sync(
            insert_idx,
            type='c_allreduce_sum',
            inputs={'X': var},
            outputs={'Out': var},
            attrs={'ring_id': ring_id,
                   OP_ROLE_KEY: OpRole.Backward})
    return


def insert_broadcast_ops(block, insert_idx, nrings, broadcast2root):
    """
    _add_broadcast_ops
    """
    ring_id = -1
J
JZ-LIANG 已提交
235
    op_role = get_valid_op_role(block, insert_idx)
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    for broadcast_name, root_device in broadcast2root:
        ring_id = (ring_id + 1) % nrings
        block._insert_op_without_sync(
            insert_idx,
            type='c_broadcast',
            inputs={'X': broadcast_name},
            outputs={'Out': broadcast_name},
            attrs={
                'ring_id': ring_id,
                'root': root_device,
                OP_ROLE_KEY: op_role
            })
    return


DtypeToSize = {
    core.VarDesc.VarType.FP16: 2,
    core.VarDesc.VarType.FP32: 4,
    core.VarDesc.VarType.FP64: 8,
    core.VarDesc.VarType.INT16: 2,
    core.VarDesc.VarType.INT32: 4,
    core.VarDesc.VarType.INT64: 8,
    core.VarDesc.VarType.BOOL: 1,
    core.VarDesc.VarType.UINT8: 1,
}


def get_var_size(param):
    """
    input:
        - param: var
    return:
        var size in Bytes
    """
    assert -1 not in param.shape
    return reduce(lambda x, y: x * y,
                  param.shape) * DtypeToSize[param.dtype] / 1024.0 / 1024.0


def insert_scale_loss_grad_ops(block, scale=1.0):
    '''
    In order to keep the learning rate consistent in different numbers of
    training workers, we scale the loss grad by the number of workers
    '''
    for idx, op in reversed(list(enumerate(block.ops))):
        if is_loss_grad_op(op):
            loss_grad_var = block.vars[op.output_arg_names[0]]
            block._insert_op_without_sync(
                idx + 1,
                type='scale',
                inputs={'X': loss_grad_var},
                outputs={'Out': loss_grad_var},
                attrs={'scale': scale,
                       OP_ROLE_KEY: OpRole.Backward})
J
JZ-LIANG 已提交
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401


def comm_analyse(main_program):
    """
    Analyse the parameter size that need to be broadcast/allreduce during sharding training 
    """
    reduce_vars = {}
    broadcast_vars = {}
    block = main_program.global_block()
    for op in block.ops:
        if op.type == "c_broadcast":
            var_name = op.desc.input_arg_names()[0]
            broadcast_vars[var_name] = get_var_size(block.var(var_name))
        elif op.type == "c_allreduce_sum":
            var_name = op.desc.input_arg_names()[0]
            reduce_vars[var_name] = get_var_size(block.var(var_name))

    varsize_count = {}
    gap = 1

    for k, v in broadcast_vars.items():
        print("broadcast: {}: {} KB".format(k, v))
        if (int(v / gap) in varsize_count):
            varsize_count[int(v / gap)] += 1
        else:
            varsize_count[int(v / gap)] = 1

    for k, v in reduce_vars.items():
        print("allreduce: {}: {} KB".format(k, v))
        if (int(v / gap) in varsize_count):
            varsize_count[int(v / gap)] += 1
        else:
            varsize_count[int(v / gap)] = 1

    with open("nccl_size.txt", 'w') as f:
        sorted_varsize = sorted(varsize_count.items(), key=lambda x: x[0])
        for varsize, count in sorted_varsize:
            print("NCCL size {}~{} KB: {}".format(varsize, varsize + 1, count))
            f.write("NCCL size {}~{} KB: {}\n".format(varsize, varsize + 1,
                                                      count))


def add_sync_comm_for_test(program, dist_strategy):
    """
    When clone a test prog by clone from the sharding main prog, 
    part of the sync_comm op maybe be pruned by mistake, this function
    add the sync_comm op for the test prog.

    """
    #NOTE (liangjianzhong): only support one comm stream by now, use more than one 
    # comm streams will cause error. should be revise in future.

    block = program.global_block()
    not_sync_vars = set([])
    for op in block.ops:
        if op.type in ["c_broadcast", "c_allreduce"]:
            for input_name in op.desc.input_arg_names():
                not_sync_vars.add(input_name)
        if op.type == "c_sync_comm_stream":
            for input_name in op.desc.input_arg_names():
                not_sync_vars.remove(input_name)
    if not_sync_vars:
        for nccl_id in range(dist_strategy.nccl_comm_num):
            block.append_op(
                type='c_sync_comm_stream',
                inputs={'X': list(not_sync_vars)},
                outputs={'Out': list(not_sync_vars)},
                attrs={
                    'ring_id': nccl_id,
                    'op_role': core.op_proto_and_checker_maker.OpRole.Forward
                })
    return


def sharding_save_persistables(exe, dirname, main_program, filename=None):
    """
    When use sharding, part of persistable vars are unique and are partitioned in different ranks,
    and part of persistable vars are duplicated and exist in all the ranks with different values.
    This function handles the model saving for sharding training.
    """

    def is_opt_vars(var):
        # NOTE(liangjianzhong): The checks should be updated when add new compatible optimizer
        # now only Momentum and adam are compatible with sharding
        checks = [
            "_moment1_0", "_moment2_0", "_beta1_pow_acc_0", "_beta2_pow_acc_0",
            "_velocity_0"
        ]
        for check in checks:
            if var.name.endswith(check):
                return True
        return False

    def is_trainable(var):
        return isinstance(var,
                          paddle.fluid.framework.Parameter) and var.trainable

    def sharding_predicate(var):
        return is_trainable(var) or is_opt_vars(var)

    if int(os.environ.get('PADDLE_TRAINER_ID', 0)) == 0:
        paddle.fluid.io.save_persistables(
            exe, dirname, main_program=main_program, filename=None)
    else:
        paddle.fluid.io.save_vars(
            exe,
            dirname,
            main_program=main_program,
            predicate=sharding_predicate,
            filename=None)

    return