unstack_op.h 4.7 KB
Newer Older
D
dzhwinter 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "paddle/fluid/framework/op_registry.h"

namespace paddle {
namespace operators {

class UnStackOpInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must exist.");

    int axis = ctx->Attrs().Get<int>("axis");
    int num = ctx->Attrs().Get<int>("num");
    auto x_dim = ctx->GetInputDim("X");
    int rank = x_dim.size();
    PADDLE_ENFORCE(axis >= -rank && axis < rank,
                   "Attr(axis) must be inside [-rank, rank), where rank = %d",
                   rank);
    if (axis < 0) axis += rank;

    PADDLE_ENFORCE_EQ(ctx->Outputs("Y").size(), static_cast<size_t>(num),
                      "Number of Outputs(Y) is wrong");
    if (x_dim[axis] > 0) {
      PADDLE_ENFORCE_EQ(num, x_dim[axis], "Number of Outputs(Y) is wrong");
    }
    auto vec = framework::vectorize2int(x_dim);
    vec.erase(vec.begin() + axis);
    ctx->SetOutputsDim("Y", std::vector<framework::DDim>(  // NOLINT
                                x_dim[axis], framework::make_ddim(vec)));
  }
};

class UnStackOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input of unstack op.");
    AddOutput("Y", "The output of unstack op.").AsDuplicable();
    AddAttr<int>("axis", "The axis along which Input(X) should be unstacked.")
        .SetDefault(0);
    AddAttr<int>("num", "The number of outputs(Y).").GreaterThan(0);
    AddComment(R"DOC(
      UnStack Operator.

      UnStack Input(X) into several tensors along Attr(axis).
    )DOC");
  }
};

class UnStackOp : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto stack_grad_op = framework::OpRegistry::CreateOp(
        "stack_grad", {{framework::GradVarName("Y"), {Input("X")}}},
        {{framework::GradVarName("X"), Outputs("Y")}}, Attrs());
    stack_grad_op->Run(scope, place);
  }
};

class UnStackOpGradInferShape : public framework::InferShapeBase {
 public:
  void operator()(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_GT(ctx->Inputs(framework::GradVarName("Y")).size(), 0,
                      "Number of Inputs(Y@Grad) must be larger than 0");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@Grad) must exist.");

    auto input_dims = ctx->GetInputsDim(framework::GradVarName("Y"));
    for (size_t i = 1; i < input_dims.size(); ++i) {
      PADDLE_ENFORCE_EQ(input_dims[i], input_dims[0],
                        "Dims of all Inputs(Y@Grad) must be the same");
    }

    int axis = ctx->Attrs().Get<int>("axis");
    int rank = input_dims[0].size();
    PADDLE_ENFORCE(
        axis >= -(rank + 1) && axis < rank + 1,
        "Attr(axis) must be inside [-(rank+1), rank+1), where rank = %d", rank);
    if (axis < 0) axis += (rank + 1);

    auto vec = framework::vectorize2int(input_dims[0]);
    vec.insert(vec.begin() + axis, input_dims.size());
    ctx->SetOutputDim(framework::GradVarName("X"), framework::make_ddim(vec));
  }
};

class UnStackGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());
    op->SetType("unstack_grad");
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
    op->SetAttrMap(Attrs());
    return op;
  }
};

class UnStackGradOp : public framework::OperatorBase {
 public:
  using OperatorBase::OperatorBase;

 private:
  void RunImpl(const framework::Scope &scope,
               const platform::Place &place) const override {
    auto stack_op = framework::OpRegistry::CreateOp(
        "stack", {{"X", Inputs(framework::GradVarName("Y"))}},
        {{"Y", {Output(framework::GradVarName("X"))}}}, Attrs());
    stack_op->Run(scope, place);
  }
};

}  // namespace operators
}  // namespace paddle