norm_utils.cu.h 21.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include <cfloat>
#include <string>
#include <vector>
20
#ifdef __NVCC__
21
#include "cub/cub.cuh"
22 23 24 25 26
#endif
#ifdef __HIPCC__
#include <hipcub/hipcub.hpp>
namespace cub = hipcub;
#endif
27 28
#include "paddle/fluid/framework/data_layout.h"
#include "paddle/fluid/operators/math/math_function.h"
29 30 31
#ifdef PADDLE_WITH_HIP
#include "paddle/fluid/platform/miopen_helper.h"
#else
32
#include "paddle/fluid/platform/cudnn_helper.h"
33
#endif
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using DataLayout = framework::DataLayout;

// math: dx = scale * ((x - mean) * inv_var / NxHxW * (np.mean(ddx,
// axis=(n,h,w)) *
//          np.sum(dy, axis=(n,h,w)) -
//          np.sum(dy * ddx, axis=(n,h,w)) + 3 * np.mean(dy * (x -
//          mean),
//          axis=(n,h,w)) * inv_var.pow(2) *
//          np.sum(ddx * (x - mean), axis=(n,h,w))) + inv_var.pow(3) /
//          NxHxW *
//          np.sum(ddx * (x - mean)) *
//          (np.mean(dy, axis=(n,h,w)) - dy) + inv_var.pow(3) / NxHxW *
//          np.sum(dy,
//          axis=(n,h,w)) * (x - mean) *
53
//          (np.mean(ddx, axis=(n,h,w)) - ddx)) + ddr * (dy * inv_var -
54 55 56 57
//          inv_var
//          *
//          np.mean(dy, axis=(n,h,w)) -
//          inv_var.pow(3) * (x - mean) * np.mean(dy * (x - mean),
58
//          axis=(n,h,w)))
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

template <typename T, int BlockDim, framework::DataLayout layout>
__global__ void DoubleGradComputeDX(const T *x, const T *mean,
                                    const T *variance, const T *ddx,
                                    const T *dy, const T *scale,
                                    const T *ddscale, const int N, const int C,
                                    const int sample_size, const double epsilon,
                                    T *dx) {
  const int outer_size = C;
  const int inner_size = N * sample_size;

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage ddx_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_ddx_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_x_sub_mean_storage;
  __shared__ typename BlockReduce::TempStorage ddx_mul_x_sub_mean_storage;
  __shared__ T dy_sum_val;
  __shared__ T ddx_sum_val;
  __shared__ T dy_mul_ddx_sum_val;
  __shared__ T dy_mul_x_sub_mean_sum_val;
  __shared__ T ddx_mul_x_sub_mean_sum_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    T mean_val = mean[i];
    T var_val = variance[i];
    T dy_sum = 0;
    T ddx_sum = 0;
    T dy_mul_ddx_sum = 0;
    T dy_mul_x_sub_mean_sum = 0;
    T ddx_mul_x_sub_mean_sum = 0;
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index =
          layout == framework::DataLayout::kNCHW
              ? (j / sample_size * C + i) * sample_size + j % sample_size
              : j * outer_size + i;
      T ddx_i = ddx[index];
      T dy_i = dy[index];
      T tmp = x[index] - mean_val;

      dy_sum += dy_i;
      ddx_sum += ddx_i;
      dy_mul_ddx_sum += (ddx_i * dy_i);

      dy_mul_x_sub_mean_sum += (dy_i * tmp);
      ddx_mul_x_sub_mean_sum += (ddx_i * tmp);
    }

    dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
    ddx_sum = BlockReduce(ddx_storage).Reduce(ddx_sum, cub::Sum());
    dy_mul_ddx_sum =
        BlockReduce(dy_mul_ddx_storage).Reduce(dy_mul_ddx_sum, cub::Sum());
    dy_mul_x_sub_mean_sum = BlockReduce(dy_mul_x_sub_mean_storage)
                                .Reduce(dy_mul_x_sub_mean_sum, cub::Sum());
    ddx_mul_x_sub_mean_sum = BlockReduce(ddx_mul_x_sub_mean_storage)
                                 .Reduce(ddx_mul_x_sub_mean_sum, cub::Sum());

    if (threadIdx.x == 0) {
      dy_sum_val = dy_sum;
      ddx_sum_val = ddx_sum;
      dy_mul_ddx_sum_val = dy_mul_ddx_sum;
      dy_mul_x_sub_mean_sum_val = dy_mul_x_sub_mean_sum;
      ddx_mul_x_sub_mean_sum_val = ddx_mul_x_sub_mean_sum;
    }
    __syncthreads();

    if (ddx != nullptr) {
      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index =
            layout == framework::DataLayout::kNCHW
                ? (j / sample_size * C + i) * sample_size + j % sample_size
                : j * outer_size + i;
        dx[index] +=
            ((x[index] - mean_val) * var_val * var_val * var_val / inner_size *
                 (ddx_sum_val * dy_sum_val / inner_size - dy_mul_ddx_sum_val +
                  3. * dy_mul_x_sub_mean_sum_val * var_val *
                      ddx_mul_x_sub_mean_sum_val * var_val / inner_size) +
             ddx_mul_x_sub_mean_sum_val * var_val / inner_size * var_val *
                 var_val * (dy_sum_val / inner_size - dy[index]) +
             dy_mul_x_sub_mean_sum_val * var_val / inner_size * var_val *
                 var_val * (ddx_sum_val / inner_size - ddx[index])) *
            scale[i];
      }
    }
    __syncthreads();
    if (ddscale != nullptr) {
      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index =
            layout == framework::DataLayout::kNCHW
                ? (j / sample_size * C + i) * sample_size + j % sample_size
                : j * outer_size + i;
        dx[index] += (dy[index] * var_val - dy_sum_val / inner_size * var_val -
151
                      (x[index] - mean_val) * var_val * var_val *
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
                          dy_mul_x_sub_mean_sum_val * var_val / inner_size) *
                     ddscale[i];
      }
    }
  }
}

// math: ddy = (x - mean) * inv_var * ddscale + ddbias +
//           scale * inv_var * (ddx - (x - mean) * inv_var.pow(2) *
//           np.mean(ddx * (x - mean), axis=(n,h,w)))
template <typename T, int BlockDim, framework::DataLayout layout>
__global__ void DoubleGradComputeDDY(const T *x, const T *mean,
                                     const T *variance, const T *ddscale,
                                     const T *ddbias, const T *ddx,
                                     const T *scale, const int N, const int C,
                                     const int sample_size,
                                     const double epsilon, T *ddy) {
  const int outer_size = C;
  const int inner_size = N * sample_size;

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ddx_storage;
  __shared__ typename BlockReduce::TempStorage ddx_mul_x_sub_mean_storage;
  __shared__ T ddx_sum_val;
  __shared__ T ddx_mul_x_sub_mean_sum_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    T mean_val = mean[i];
    T var_val = variance[i];
    T ddx_sum = 0;
    T ddx_mul_x_sub_mean_sum = 0;
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index =
          layout == framework::DataLayout::kNCHW
              ? (j / sample_size * C + i) * sample_size + j % sample_size
              : j * outer_size + i;
      T ddx_i = ddx[index];
      ddx_sum += ddx_i;
      ddx_mul_x_sub_mean_sum += (ddx_i * (x[index] - mean_val));
    }
    ddx_sum = BlockReduce(ddx_storage).Reduce(ddx_sum, cub::Sum());
    ddx_mul_x_sub_mean_sum = BlockReduce(ddx_mul_x_sub_mean_storage)
                                 .Reduce(ddx_mul_x_sub_mean_sum, cub::Sum());

    if (threadIdx.x == 0) {
      ddx_sum_val = ddx_sum;
      ddx_mul_x_sub_mean_sum_val = ddx_mul_x_sub_mean_sum;
    }
    __syncthreads();

    if (ddx != nullptr) {
      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index =
            layout == framework::DataLayout::kNCHW
                ? (j / sample_size * C + i) * sample_size + j % sample_size
                : j * outer_size + i;
        ddy[index] += scale[i] * var_val *
                      (ddx[index] - ddx_sum_val / inner_size -
                       (x[index] - mean_val) * var_val *
                           ddx_mul_x_sub_mean_sum_val * var_val / inner_size);
      }
    }
    __syncthreads();
    if (ddscale != nullptr) {
      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index =
            layout == framework::DataLayout::kNCHW
                ? (j / sample_size * C + i) * sample_size + j % sample_size
                : j * outer_size + i;
        ddy[index] += (x[index] - mean_val) * var_val * ddscale[i];
      }
    }
    __syncthreads();
    if (ddbias != nullptr) {
      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index =
            layout == framework::DataLayout::kNCHW
                ? (j / sample_size * C + i) * sample_size + j % sample_size
                : j * outer_size + i;
        ddy[index] += ddbias[i];
      }
    }
  }
}

// math: dscale = inv_var * (dy - np.mean(dy, axis=(n,h,w) - (x-mean) *
//            inv_var.pow(2) * np.mean(dy * (x-mean), axis=(n,h,w)))) *
//            ddx
template <typename T, int BlockDim, framework::DataLayout layout>
__global__ void DoubleGradComputeDScale(const T *x, const T *mean,
                                        const T *variance, const T *ddx,
                                        const T *dy, const int N, const int C,
                                        const int sample_size,
                                        const double epsilon, T *dscale) {
  const int outer_size = C;
  const int inner_size = N * sample_size;

  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage dy_storage;
  __shared__ typename BlockReduce::TempStorage dy_mul_x_sub_mean_storage;
  __shared__ typename BlockReduce::TempStorage dscale_tmp_storage;
  __shared__ T dy_sum_val;
  __shared__ T dy_mul_x_sub_mean_sum_val;

  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    T dy_sum = 0;
    T dy_mul_x_sub_mean_sum = 0;
    T mean_val = mean[i];
    T var_val = variance[i];
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index =
          layout == framework::DataLayout::kNCHW
              ? (j / sample_size * C + i) * sample_size + j % sample_size
              : j * outer_size + i;
      T dy_i = dy[index];
      dy_sum += dy_i;
      dy_mul_x_sub_mean_sum += (dy_i * (x[index] - mean_val));
    }
    dy_sum = BlockReduce(dy_storage).Reduce(dy_sum, cub::Sum());
    dy_mul_x_sub_mean_sum = BlockReduce(dy_mul_x_sub_mean_storage)
                                .Reduce(dy_mul_x_sub_mean_sum, cub::Sum());

    if (threadIdx.x == 0) {
      dy_sum_val = dy_sum;
      dy_mul_x_sub_mean_sum_val = dy_mul_x_sub_mean_sum;
    }
    __syncthreads();

    if (ddx != nullptr) {
      T dscale_tmp = 0;
      for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
        const int index =
            layout == framework::DataLayout::kNCHW
                ? (j / sample_size * C + i) * sample_size + j % sample_size
                : j * outer_size + i;
        dscale_tmp += ddx[index] * var_val *
                      (dy[index] - dy_sum_val / inner_size -
                       dy_mul_x_sub_mean_sum_val * (x[index] - mean_val) *
                           var_val * var_val / inner_size);
      }
      dscale_tmp =
          BlockReduce(dscale_tmp_storage).Reduce(dscale_tmp, cub::Sum());

      if (threadIdx.x == 0) {
        dscale[i] += dscale_tmp;
      }
      __syncthreads();
    }
  }
}

// math: dscale = np.sum(ddx * dy, axis=(n,h,w)) * inv_var
template <typename T, int BlockDim, framework::DataLayout layout>
__global__ void DoubleGradComputeDScaleWithGlobal(
    const T *ddx, const T *variance, const T *dy, const double epsilon,
    const int N, const int C, const int sample_size, T *dscale) {
  int outer_size = C;
  int inner_size = N * sample_size;
  typedef cub::BlockReduce<T, BlockDim> BlockReduce;
  __shared__ typename BlockReduce::TempStorage ddx_mul_dy_storage;
  __shared__ T ddx_mul_dy_sum_val;
  for (int i = blockIdx.x; i < outer_size; i += gridDim.x) {
    T inv_var_i = 1.0 / sqrt(variance[i] + epsilon);
    T ddx_mul_dy_sum = 0;
    for (int j = threadIdx.x; j < inner_size; j += blockDim.x) {
      const int index =
          layout == framework::DataLayout::kNCHW
              ? (j / sample_size * C + i) * sample_size + j % sample_size
              : j * outer_size + i;
      T ddx_i = ddx[index];
      T dy_i = dy[index];
      ddx_mul_dy_sum += (ddx_i * dy_i);
    }
    ddx_mul_dy_sum =
        BlockReduce(ddx_mul_dy_storage).Reduce(ddx_mul_dy_sum, cub::Sum());
    if (threadIdx.x == 0) {
      ddx_mul_dy_sum_val = ddx_mul_dy_sum;
    }
    __syncthreads();

    if (ddx != nullptr) {
      dscale[i] = inv_var_i * ddx_mul_dy_sum_val;
    }
  }
}

// math: dx = ddscale * dy * inv_var
template <typename T, framework::DataLayout layout>
340 341 342 343 344
__global__ void DoubleGradComputeDXWithGlobal(const T *dy, const T *ddscale,
                                              const T *variance,
                                              const double epsilon, const int C,
                                              const int sample_size,
                                              const int num, T *dx) {
345 346
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;
347
  if (ddscale != nullptr) {
348 349 350 351
    for (int i = gid; i < num; i += stride) {
      const int c =
          layout == framework::DataLayout::kNCHW ? i / sample_size % C : i % C;
      T inv_var = 1.0 / sqrt(variance[c] + epsilon);
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
      dx[i] = dy[i] * ddscale[c] * inv_var;
    }
  }
}

// math: ddy = scale * ddx * inv_var + ddbias +
//             ddscale * (x - mean) * inv_var
template <typename T, framework::DataLayout layout>
__global__ void DoubleGradComputeDDYWithGlobal(
    const T *ddx, const T *scale, const T *mean, const T *variance, const T *x,
    const T *ddbias, const T *ddscale, const double epsilon, const int C,
    const int sample_size, const int num, T *ddy) {
  int gid = blockIdx.x * blockDim.x + threadIdx.x;
  int stride = blockDim.x * gridDim.x;

  if (ddx != nullptr) {
    for (int i = gid; i < num; i += stride) {
      const int c =
          layout == framework::DataLayout::kNCHW ? i / sample_size % C : i % C;
      T inv_var = 1.0 / sqrt(variance[c] + epsilon);
      ddy[i] += ddx[i] * scale[c] * inv_var;
    }
  }
  __syncthreads();
  if (ddscale != nullptr) {
    for (int i = gid; i < num; i += stride) {
      const int c =
          layout == framework::DataLayout::kNCHW ? i / sample_size % C : i % C;
      T inv_var = 1.0 / sqrt(variance[c] + epsilon);
      ddy[i] += (x[i] - mean[c]) * inv_var * ddscale[c];
    }
  }
  __syncthreads();
  if (ddbias != nullptr) {
    for (int i = gid; i < num; i += stride) {
      const int c =
          layout == framework::DataLayout::kNCHW ? i / sample_size % C : i % C;
      ddy[i] += ddbias[c];
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    }
  }
}

template <typename DeviceContext, typename T>
void NormDoubleGradFunctor(const framework::ExecutionContext &ctx,
                           const DataLayout data_layout, const Tensor *X,
                           const Tensor *Scale, const Tensor *dY,
                           const Tensor *Saved_mean,
                           const Tensor *Saved_variance, const double epsilon,
                           const bool use_global_stats, const Tensor *ddX,
                           const Tensor *ddScale, const Tensor *ddBias,
                           Tensor *dX, Tensor *dScale, Tensor *ddY) {
  const T *x_data = X->data<T>();
  const T *dy_data = dY->data<T>();
  const T *ddx_data = (ddX == nullptr ? nullptr : ddX->data<T>());

  const T *ddscale_data = (ddScale == nullptr ? nullptr : ddScale->data<T>());
  const T *ddbias_data = (ddBias == nullptr ? nullptr : ddBias->data<T>());

  auto &dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
  math::SetConstant<platform::CUDADeviceContext, T> set_constant;

  auto &x_dims = X->dims();
  const int C = (data_layout == DataLayout::kNCHW ? x_dims[1]
                                                  : x_dims[x_dims.size() - 1]);
  const int N = x_dims[0];
  const int num = X->numel();
  const int sample_size = num / N / C;
  Tensor scale_tmp;
  if (!Scale) {
    scale_tmp.mutable_data<T>({C}, ctx.GetPlace());
    set_constant(dev_ctx, &scale_tmp, static_cast<T>(1));
  }
  const T *scale_data = Scale ? Scale->data<T>() : scale_tmp.data<T>();

  const int block = 512;
  int max_threads = dev_ctx.GetMaxPhysicalThreadCount();
  const int max_blocks = std::max(max_threads / block, 1);
  int grid = std::min(C, max_blocks);
  int grid1 = (num + block - 1) / block;

  const T *mean_data, *variance_data;
  if (use_global_stats) {
434
    const auto *running_mean = ctx.Input<Tensor>("Mean");
435
    const auto *running_var = ctx.Input<Tensor>("Variance");
436
    const auto *running_mean_data = running_mean->template data<T>();
437
    const auto *running_var_data = running_var->template data<T>();
438
    mean_data = running_mean_data;
439 440 441 442 443 444 445 446 447 448 449 450 451
    variance_data = running_var_data;
  } else {
    const T *smean_data = Saved_mean->data<T>();
    const T *svariance_data = Saved_variance->data<T>();
    mean_data = smean_data;
    variance_data = svariance_data;
  }

  if (dX) {
    T *dx_data = dX->mutable_data<T>(ctx.GetPlace());
    set_constant(dev_ctx, dX, static_cast<T>(0));
    if (use_global_stats) {
      if (data_layout == DataLayout::kNHWC) {
452
        DoubleGradComputeDXWithGlobal<
453 454 455 456
            T, DataLayout::kNHWC><<<grid1, block, 0, dev_ctx.stream()>>>(
            dy_data, ddscale_data, variance_data, epsilon, C, sample_size, num,
            dx_data);
      } else {
457
        DoubleGradComputeDXWithGlobal<
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
            T, DataLayout::kNCHW><<<grid1, block, 0, dev_ctx.stream()>>>(
            dy_data, ddscale_data, variance_data, epsilon, C, sample_size, num,
            dx_data);
      }
    } else {
      if (data_layout == DataLayout::kNHWC) {
        DoubleGradComputeDX<
            T, block, DataLayout::kNHWC><<<grid, block, 0, dev_ctx.stream()>>>(
            x_data, mean_data, variance_data, ddx_data, dy_data, scale_data,
            ddscale_data, N, C, sample_size, epsilon, dx_data);
      } else {
        DoubleGradComputeDX<
            T, block, DataLayout::kNCHW><<<grid, block, 0, dev_ctx.stream()>>>(
            x_data, mean_data, variance_data, ddx_data, dy_data, scale_data,
            ddscale_data, N, C, sample_size, epsilon, dx_data);
      }
    }
  }
  if (dScale) {
    T *dscale_data = dScale->mutable_data<T>(ctx.GetPlace());
    set_constant(dev_ctx, dScale, static_cast<T>(0));
    if (use_global_stats) {
      if (data_layout == DataLayout::kNHWC) {
        DoubleGradComputeDScaleWithGlobal<
            T, block, DataLayout::kNHWC><<<grid, block, 0, dev_ctx.stream()>>>(
            ddx_data, variance_data, dy_data, epsilon, N, C, sample_size,
            dscale_data);
      } else {
        DoubleGradComputeDScaleWithGlobal<
            T, block, DataLayout::kNCHW><<<grid, block, 0, dev_ctx.stream()>>>(
            ddx_data, variance_data, dy_data, epsilon, N, C, sample_size,
            dscale_data);
      }
    } else {
      if (data_layout == DataLayout::kNHWC) {
        DoubleGradComputeDScale<
            T, block, DataLayout::kNHWC><<<grid, block, 0, dev_ctx.stream()>>>(
            x_data, mean_data, variance_data, ddx_data, dy_data, N, C,
            sample_size, epsilon, dscale_data);
      } else {
        DoubleGradComputeDScale<
            T, block, DataLayout::kNCHW><<<grid, block, 0, dev_ctx.stream()>>>(
            x_data, mean_data, variance_data, ddx_data, dy_data, N, C,
            sample_size, epsilon, dscale_data);
      }
    }
  }
  if (ddY) {
    T *ddy_data = ddY->mutable_data<T>(ctx.GetPlace());
    set_constant(dev_ctx, ddY, static_cast<T>(0));
    if (use_global_stats) {
      if (data_layout == DataLayout::kNHWC) {
510
        DoubleGradComputeDDYWithGlobal<
511
            T, DataLayout::kNHWC><<<grid1, block, 0, dev_ctx.stream()>>>(
512 513
            ddx_data, scale_data, mean_data, variance_data, x_data, ddbias_data,
            ddscale_data, epsilon, C, sample_size, num, ddy_data);
514
      } else {
515
        DoubleGradComputeDDYWithGlobal<
516
            T, DataLayout::kNCHW><<<grid1, block, 0, dev_ctx.stream()>>>(
517 518
            ddx_data, scale_data, mean_data, variance_data, x_data, ddbias_data,
            ddscale_data, epsilon, C, sample_size, num, ddy_data);
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
      }
    } else {
      if (data_layout == DataLayout::kNHWC) {
        DoubleGradComputeDDY<
            T, block, DataLayout::kNHWC><<<grid, block, 0, dev_ctx.stream()>>>(
            x_data, mean_data, variance_data, ddscale_data, ddbias_data,
            ddx_data, scale_data, N, C, sample_size, epsilon, ddy_data);
      } else {
        DoubleGradComputeDDY<
            T, block, DataLayout::kNCHW><<<grid, block, 0, dev_ctx.stream()>>>(
            x_data, mean_data, variance_data, ddscale_data, ddbias_data,
            ddx_data, scale_data, N, C, sample_size, epsilon, ddy_data);
      }
    }
  }
}

}  // namespace operators
}  // namespace paddle