miopen_rnn_cache.h 10.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <vector>
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/miopen_helper.h"

namespace paddle {
namespace operators {

struct CudnnRNNCache {
  CudnnRNNCache() {
    x_desc_ = NULL;
    y_desc_ = NULL;
  }
  ~CudnnRNNCache() { release(); }

  miopenRNNDescriptor_t rnn_desc_;
  miopenTensorDescriptor_t *x_desc_;
  miopenTensorDescriptor_t *y_desc_;

  miopenTensorDescriptor_t hx_desc_;
  miopenTensorDescriptor_t cx_desc_;
  miopenTensorDescriptor_t hy_desc_;
  miopenTensorDescriptor_t cy_desc_;

  miopenTensorDescriptor_t dhx_desc_;
  miopenTensorDescriptor_t dcx_desc_;
  miopenTensorDescriptor_t dhy_desc_;
  miopenTensorDescriptor_t dcy_desc_;

  miopenTensorDescriptor_t output_x_desc_;
  miopenTensorDescriptor_t output_y_desc_;

  miopenDropoutDescriptor_t dropout_desc_;

  size_t weights_size_;
  miopenTensorDescriptor_t w_desc_;
  miopenTensorDescriptor_t dw_desc_;

  size_t workspace_size_;
  framework::Tensor workspace_data_;

  size_t seq_length_;

  float dropout_prob_;
  bool is_bidirec_;

  int batch_size_;
  int input_size_;
  int hidden_size_;
  int num_layers_;
  int seed_;

  void init(miopenHandle_t handle, const platform::Place &place, size_t seq_len,
            int batch_size, int input_size, int hidden_size, int num_layers,
            float dropout_prob, bool is_bidirec, int seed, int weight_numel,
            size_t *reserve_size_, framework::Tensor *dropout_state_,
            bool initialized, miopenDataType_t miopen_type) {
    seq_length_ = seq_len;
    batch_size_ = batch_size;
    input_size_ = input_size;
    hidden_size_ = hidden_size;
    num_layers_ = num_layers;
    dropout_prob_ = dropout_prob;
    is_bidirec_ = is_bidirec;
    seed_ = seed;

    const auto numDirections = is_bidirec_ ? 2 : 1;

    PADDLE_ENFORCE_EQ(miopen_type, miopenFloat,
                      platform::errors::InvalidArgument(
                          "MIOPEN do not support double datatype."));
    auto miopen_size = sizeof(float);

    x_desc_ = new miopenTensorDescriptor_t[seq_length_];
    y_desc_ = new miopenTensorDescriptor_t[seq_length_];
    std::vector<int> dims = {batch_size_, input_size_, 1};
    std::vector<int> strides = {input_size_, 1, 1};

    std::vector<int> dims_y = {batch_size_, hidden_size_ * numDirections, 1};
    std::vector<int> strides_y = {hidden_size_ * numDirections, 1, 1};

    for (size_t i = 0; i < seq_length_; ++i) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenCreateTensorDescriptor(&x_desc_[i]));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenCreateTensorDescriptor(&y_desc_[i]));

      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
          x_desc_[i], miopen_type, 3, const_cast<int *>(dims.data()),
          const_cast<int *>(strides.data())));

      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
          y_desc_[i], miopen_type, 3, const_cast<int *>(dims_y.data()),
          const_cast<int *>(strides_y.data())));
    }

    std::vector<int> dims_hx = {num_layers_ * numDirections, batch_size_,
                                hidden_size_};
    std::vector<int> strides_hx = {hidden_size_ * batch_size_, hidden_size_, 1};

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&hx_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&cx_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&hy_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&cy_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&dhx_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&dcx_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&dhy_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&dcy_desc_));

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        hx_desc_, miopen_type, 3, const_cast<int *>(dims_hx.data()),
        const_cast<int *>(strides_hx.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        cx_desc_, miopen_type, 3, const_cast<int *>(dims_hx.data()),
        const_cast<int *>(strides_hx.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        hy_desc_, miopen_type, 3, const_cast<int *>(dims_hx.data()),
        const_cast<int *>(strides_hx.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        cy_desc_, miopen_type, 3, const_cast<int *>(dims_hx.data()),
        const_cast<int *>(strides_hx.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        dhx_desc_, miopen_type, 3, const_cast<int *>(dims_hx.data()),
        const_cast<int *>(strides_hx.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        dcx_desc_, miopen_type, 3, const_cast<int *>(dims_hx.data()),
        const_cast<int *>(strides_hx.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        dhy_desc_, miopen_type, 3, const_cast<int *>(dims_hx.data()),
        const_cast<int *>(strides_hx.data())));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        dcy_desc_, miopen_type, 3, const_cast<int *>(dims_hx.data()),
        const_cast<int *>(strides_hx.data())));

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateDropoutDescriptor(&dropout_desc_));

    size_t state_size;
    if (!initialized) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenDropoutGetStatesSize(handle, &state_size));
      dropout_state_->Resize({static_cast<int64_t>(state_size)});
      uint8_t *dropout_state_data =
          dropout_state_->mutable_data<uint8_t>(place);
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetDropoutDescriptor(
          dropout_desc_, handle, dropout_prob_, dropout_state_data, state_size,
          seed_, false, false, MIOPEN_RNG_PSEUDO_XORWOW));
    } else {
      uint8_t *dropout_state_data = dropout_state_->data<uint8_t>();
      auto dropout_state_dims = dropout_state_->dims();
      state_size = dropout_state_dims[0];
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenRestoreDropoutDescriptor(
              dropout_desc_, handle, dropout_prob_, dropout_state_data,
              state_size, 0, false, false, MIOPEN_RNG_PSEUDO_XORWOW));
    }

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateRNNDescriptor(&rnn_desc_));

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetRNNDescriptor(
        rnn_desc_, hidden_size_, num_layers_, miopenRNNlinear,
        is_bidirec_ ? miopenRNNbidirection : miopenRNNunidirection, miopenLSTM,
        miopenRNNNoBias, miopenRNNdefault, miopen_type));

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&w_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenCreateTensorDescriptor(&dw_desc_));

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenGetRNNParamsSize(
        handle, rnn_desc_, x_desc_[0], &weights_size_, miopen_type));

    PADDLE_ENFORCE_EQ(
        weights_size_, miopen_size * weight_numel,
        platform::errors::InvalidArgument(
            "The miopen lstm and setting weight size should be same."));

    int dim_w[3];
    dim_w[0] = weights_size_ / miopen_size;
    dim_w[1] = 1;
    dim_w[2] = 1;

    int dim_s[2];
    dim_s[1] = 1;
    dim_s[0] = dim_w[1];

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        w_desc_, miopen_type, 3, dim_w, dim_s));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenSetTensorDescriptor(
        dw_desc_, miopen_type, 3, dim_w, dim_s));

    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::miopenGetRNNWorkspaceSize(
        handle, rnn_desc_, seq_length_, x_desc_, &workspace_size_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenGetRNNTrainingReserveSize(
            handle, rnn_desc_, seq_length_, x_desc_, reserve_size_));

    workspace_data_.Resize({static_cast<int64_t>(workspace_size_)});
    workspace_data_.mutable_data<uint8_t>(place);
  }

  void release() {
    for (size_t i = 0; i < seq_length_; ++i) {
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenDestroyTensorDescriptor(x_desc_[i]));
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::miopenDestroyTensorDescriptor(y_desc_[i]));
    }

    delete[] x_desc_;
    delete[] y_desc_;

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(hx_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(cx_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(hy_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(cy_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(dhx_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(dcx_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(dhy_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(dcy_desc_));

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyDropoutDescriptor(dropout_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyRNNDescriptor(rnn_desc_));

    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(w_desc_));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::miopenDestroyTensorDescriptor(dw_desc_));
  }
};

}  // namespace operators
}  // namespace paddle