op_teller.cc 3.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/op_teller.h"

namespace paddle {
namespace inference {
namespace tensorrt {

// Just tell by the op_types.
struct SimpleOpTypeSetTeller : public Teller {
23 24 25
  SimpleOpTypeSetTeller() {
#if IS_TRT_VERSION_GE(5130)
    teller_set.insert("relu6");
26
    teller_set.insert("hard_sigmoid");
27 28 29 30 31
#endif
#if IS_TRT_VERSION_GE(6000)
    teller_set.insert("fused_embedding_eltwise_layernorm");
    teller_set.insert("multihead_matmul");
    teller_set.insert("skip_layernorm");
32 33
#endif
  }
34

35 36 37 38 39 40 41
  bool operator()(const std::string& op_type, const framework::OpDesc& desc,
                  bool use_no_calib_int8) override {
    if (use_no_calib_int8) {
      return int8_teller_set.count(op_type);
    } else {
      return teller_set.count(op_type);
    }
42 43 44
  }

 private:
45 46
  // use this set for no calib int8.
  std::unordered_set<std::string> int8_teller_set{
47 48 49 50 51
      "mul",        "conv2d",           "pool2d",
      "relu",       "depthwise_conv2d", "softmax",
      "batch_norm", "elementwise_add",  "leaky_relu",
      "fc"};
  std::unordered_set<std::string> teller_set{
52 53 54 55 56 57
      "mul",
      "conv2d",
      "pool2d",
      "relu",
      "softmax",
      "sigmoid",
58
      "hard_swish",
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
      "depthwise_conv2d",
      "batch_norm",
      "concat",
      "tanh",
      "pad",
      "elementwise_add",
      "elementwise_mul",
      "dropout",
      "prelu",
      "conv2d_transpose",
      "leaky_relu",
      "fc",
      "shuffle_channel",
      "swish",
      "split",
      "instance_norm",
      "gelu",
      "layer_norm",
77
      "scale",
78
  };
79 80
};

81 82
bool OpTeller::Tell(const std::string& op_type, const framework::OpDesc& desc,
                    bool use_no_calib_int8) {
83
  // do not support the op which is labeled the `skip_quant`
84 85 86 87
  if ((desc.HasAttr("namescope") &&
       boost::get<std::string>(desc.GetAttr("op_namescope")) ==
           "/skip_quant_2/") ||
      desc.HasAttr("skip_quant"))
88
    return false;
89

90
  for (auto& teller : tellers_) {
91 92 93 94 95 96
    if (op_type == "pool2d" || op_type == "conv2d" ||
        op_type == "depthwise_conv2d" || op_type == "conv2d_transpose") {
      std::vector<int> paddings =
          boost::get<std::vector<int>>(desc.GetAttr("paddings"));
      if (paddings.size() > 2) return false;
    }
97
    if ((*teller)(op_type, desc, use_no_calib_int8)) return true;
98 99 100 101 102 103 104 105 106
  }
  return false;
}

OpTeller::OpTeller() { tellers_.emplace_back(new SimpleOpTypeSetTeller); }

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle