elementwise_pow_op.h 3.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

Q
Qiao Longfei 已提交
9 10 11 12 13 14 15 16 17
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <cmath>
18
#include <type_traits>
W
wanghuancoder 已提交
19

20
#include "paddle/fluid/operators/elementwise/elementwise_op.h"
Q
Qiao Longfei 已提交
21 22 23 24 25 26

namespace paddle {
namespace operators {

template <typename T>
struct PowFunctor {
27
  inline HOSTDEVICE T operator()(const T a, const T b) const {
J
joejiong 已提交
28 29
// TODO(wujionghao): A potential speed improvement is supporting different
// types in C++.
30
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
J
joejiong 已提交
31 32 33 34
    // On CUDAPlace, std::pow(3, 1) calls pow(float, float), and
    // it will return a float number like 2.99... , which floor to 2
    // when cast to int by default and it is wrong.
    // Use llrint to cast it to the nearest integer, which is 3.
35
    if (std::is_integral<T>::value) {
36 37
      return std::llrint(
          std::pow(static_cast<double>(a), static_cast<double>(b)));
38
    }
J
joejiong 已提交
39
#endif
40 41
    return std::pow(a, b);
  }
Q
Qiao Longfei 已提交
42 43 44 45 46 47
};

template <typename DeviceContext, typename T>
class ElementwisePowKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
48
    using Tensor = framework::LoDTensor;
C
chengduoZH 已提交
49
    auto* x = ctx.Input<Tensor>("X");
50 51 52 53
    PADDLE_ENFORCE_EQ(x != nullptr, true,
                      platform::errors::NotFound(
                          "Cannot get input Variable X, Variable name = %s",
                          ctx.InputName("X")));
C
chengduoZH 已提交
54 55 56 57
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    z->mutable_data<T>(ctx.GetPlace());
    int axis = ctx.Attr<int>("axis");
C
chengduoZH 已提交
58 59
    ElementwiseComputeEx<PowFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          PowFunctor<T>(), z);
Q
Qiao Longfei 已提交
60 61 62
  }
};

63 64 65
template <typename T>
struct PowGradDX {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
66 67 68 69 70 71
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    if (std::is_integral<T>::value) {
      return dout * y *
             std::pow(static_cast<double>(x), static_cast<double>(y - 1));
    }
#endif
72 73 74 75
    return dout * y * std::pow(x, y - 1);
  }
};

76
template <typename T, typename Enable = void>
77 78
struct PowGradDY {
  HOSTDEVICE T operator()(T x, T y, T out, T dout) const {
79 80 81 82 83 84
#if defined(__CUDA_ARCH__) || defined(__HIPCC__)
    if (std::is_integral<T>::value) {
      return dout * std::log(static_cast<double>(x)) *
             std::pow(static_cast<double>(x), static_cast<double>(y));
    }
#endif
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    return dout * std::log(x) * std::pow(x, y);
  }
};

template <typename DeviceContext, typename T>
class ElementwisePowGradKernel : public ElemwiseGradKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    ElemwiseGradKernel<T>::Compute(ctx);
    using Tensor = framework::Tensor;
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* out = dout;
    auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
    auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y"));
    int axis = ctx.Attr<int>("axis");
    ElemwiseGradCompute<DeviceContext, T, PowGradDX<T>, PowGradDY<T>>(
        ctx, *x, *y, *out, *dout, axis, dx, dy, PowGradDX<T>(), PowGradDY<T>());
  }
};
Q
Qiao Longfei 已提交
106 107
}  // namespace operators
}  // namespace paddle