binary.cc 31.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/infermeta/binary.h"
F
From00 已提交
16 17 18 19

#include <algorithm>
#include <vector>
#include "paddle/phi/common/data_type.h"
20
#include "paddle/phi/core/ddim.h"
21
#include "paddle/phi/core/infermeta_utils.h"
22
#include "paddle/phi/kernels/funcs/common_shape.h"
C
Chen Weihang 已提交
23

24
namespace phi {
C
Chen Weihang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
namespace detail {

static void BinarySameInputDimsCheck(const MetaTensor& x,
                                     const MetaTensor& y,
                                     MetaConfig config) {
  auto input_dim = x.dims();
  auto other_dim = y.dims();
  PADDLE_ENFORCE_EQ(input_dim.size(),
                    other_dim.size(),
                    phi::errors::PreconditionNotMet(
                        "Input(Input) and Input(Other) must have the same "
                        "dimension size."));
  int n = input_dim.size();
  bool is_runtime = config.is_runtime;
  for (int i = 0; i < n; i++) {
    if (is_runtime) {
      PADDLE_ENFORCE_EQ(input_dim[i],
                        other_dim[i],
                        phi::errors::PreconditionNotMet(
                            "The value at dim %d of Input(Input) is not "
                            "equal to the Input(Other): %ld != %ld.",
                            i,
                            input_dim[i],
                            other_dim[i]));
    } else {
      if (!(input_dim[i] < 0 || other_dim[i] < 0)) {
        PADDLE_ENFORCE_EQ(input_dim[i],
                          other_dim[i],
                          phi::errors::PreconditionNotMet(
                              "The value at dim %d of Input(Input) is not "
                              "equal to the Input(Other): %ld != %ld.",
                              i,
                              input_dim[i],
                              other_dim[i]));
      }
    }
  }
}

}  // namespace detail

void AllValueCompareInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              MetaTensor* out,
                              MetaConfig config) {
  detail::BinarySameInputDimsCheck(x, y, config);

  out->set_dims(phi::make_ddim({1}));
  out->set_dtype(DataType::BOOL);
}
75

76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
void KLDivInferMeta(const MetaTensor& x,
                    const MetaTensor& label,
                    const std::string& reduction,
                    MetaTensor* out,
                    MetaConfig config) {
  auto dim_x = x.dims();
  auto dim_target = label.dims();
  PADDLE_ENFORCE_EQ(dim_x.size(),
                    dim_target.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) rank and Input(Target) rank should be "
                        "same, but received X rank(%d) != Target rank(%d)",
                        dim_x.size(),
                        dim_target.size()));
  for (int i = 0; i < dim_x.size(); i++) {
    if (config.is_runtime || (dim_x[i] > 0 && dim_target[i] > 0)) {
      PADDLE_ENFORCE_EQ(
          dim_x[i],
          dim_target[i],
          phi::errors::InvalidArgument(
              "Input(X) and Input(Target) should in same shape. but received "
              "X dimension[%d](%d) != Target dimension[%d](%d)",
              i,
              dim_x[i],
              i,
              dim_target[i]));
    }
  }

  auto reduction_valid = "mean" == reduction || "sum" == reduction ||
                         "batchmean" == reduction || "none" == reduction;
  PADDLE_ENFORCE_EQ(
      reduction_valid,
      true,
      phi::errors::InvalidArgument(
          "Attr(reduction) can only be 'none'|'batchmean'|'sum'|'mean'."));

  if ("none" == reduction) {
    out->set_dims(dim_x);
  } else {
    out->set_dims({1});
  }
  out->set_dtype(x.dtype());
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
void Atan2InferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  out->share_meta(x);
}

void BCELossInferMeta(const MetaTensor& input,
                      const MetaTensor& label,
                      MetaTensor* out,
                      MetaConfig config) {
  auto input_dims = input.dims();
  auto label_dims = label.dims();

  int rank = input_dims.size();
  PADDLE_ENFORCE_EQ(rank,
                    label_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) and Input(Label) shall have the same rank."
                        "But received: the rank of Input(X) is [%d], "
                        "the rank of Input(Label) is [%d].",
                        rank,
                        label_dims.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(input_dims) <= 0 || phi::product(label_dims) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(input_dims,
                      label_dims,
                      phi::errors::InvalidArgument(
                          "Input(X) and Input(Label) shall have the same "
                          "shape. But received: the shape of Input(X) is "
                          "[%s], the shape of Input(Label) is [%s].",
                          input_dims,
                          label_dims));
  }

  out->set_dims(input_dims);
  out->set_dtype(input.dtype());
  out->share_lod(input);
}

void BincountInferMeta(const MetaTensor& x,
                       const paddle::optional<const MetaTensor&> weights,
                       int minlength,
                       MetaTensor* out) {
  auto input_dim = x.dims();

  PADDLE_ENFORCE_GE(minlength,
                    0,
                    phi::errors::InvalidArgument(
                        "The minlength should be greater than or equal to 0."
                        "But received minlength is %d",
                        minlength));

  PADDLE_ENFORCE_EQ(
      input_dim.size(),
      1,
      phi::errors::InvalidArgument("The 'shape' of Input(X) must be 1-D tensor."
                                   "But the dimension of Input(X) is [%d]",
                                   input_dim.size()));

  if (weights.is_initialized()) {
    auto weights_dim = weights->dims();
    PADDLE_ENFORCE_EQ(weights_dim.size(),
                      1,
                      phi::errors::InvalidArgument(
                          "The 'shape' of Input(Weights) must be 1-D tensor."
                          "But the dimension of Input(Weights) is [%d]",
                          weights_dim.size()));

    PADDLE_ENFORCE_EQ(
        weights_dim[0],
        input_dim[0],
        phi::errors::InvalidArgument(
            "The 'shape' of Input(Weights) must be equal to the 'shape' of "
            "Input(X)."
            "But received: the 'shape' of Input(Weights) is [%s],"
            "the 'shape' of Input(X) is [%s]",
            weights_dim,
            input_dim));
  }
  out->set_dims(phi::make_ddim({-1}));
  if (weights.is_initialized()) {
    out->set_dtype(weights->dtype());
  } else {
    out->set_dtype(x.dtype());
  }

  out->share_lod(x);
}

void CholeskySolveInferMeta(const MetaTensor& x,
                            const MetaTensor& y,
                            bool upper,
                            MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto x_dims_n = x_dims.size();
  auto y_dims_n = y_dims.size();

  PADDLE_ENFORCE_GE(x_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "the rank of input Y must greater or equal to 2"));
  PADDLE_ENFORCE_GE(y_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "the rank of input X must greater or equal to 2"));
  PADDLE_ENFORCE_EQ(
      y_dims[y_dims_n - 1],
      y_dims[y_dims_n - 2],
      phi::errors::InvalidArgument("input Matrix Y should be square matrix,"
                                   "But Got last shape of %ld x %ld",
                                   y_dims[y_dims_n - 1],
                                   y_dims[y_dims_n - 2]));
  PADDLE_ENFORCE_EQ(
      x_dims[x_dims_n - 2],
      y_dims[y_dims_n - 2],
      phi::errors::InvalidArgument("the first dim of Matrix X must be equal to "
                                   "the fisrt dim of Matrix Y,"
                                   "But Got %ld and %ld",
                                   x_dims[x_dims_n - 2],
                                   y_dims[y_dims_n - 2]));

  std::vector<int64_t> x_dims_vec = phi::vectorize(x_dims);
  std::vector<int64_t> y_dims_vec = phi::vectorize(y_dims);

  std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(), x_dims_vec.end() - 2);
  std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(), y_dims_vec.end() - 2);

  std::vector<int64_t> expand_batch_portion =
      funcs::MatrixGetBroadcastBatchPortion(x_dims_vec_cut, y_dims_vec_cut);

  std::vector<int64_t> x_broadcast_dims({expand_batch_portion});
  x_broadcast_dims.insert(x_broadcast_dims.end(),
                          {x_dims_vec[x_dims_n - 2], x_dims_vec[x_dims_n - 1]});

  // dim of 'out' is the same with 'X' after broadcast
  out->set_dims(phi::make_ddim(x_broadcast_dims));
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

F
From00 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
void CompareInferMeta(const MetaTensor& x,
                      const MetaTensor& y,
                      int axis,
                      MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_y = y.dims();

  if (dim_x == dim_y) {
    out->share_meta(x);
  } else {
    int max_dim = std::max(dim_x.size(), dim_y.size());
    int axis = std::abs(dim_x.size() - dim_y.size());
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
    funcs::GetBroadcastDimsArrays(dim_x,
                                  dim_y,
                                  x_dims_array.data(),
                                  y_dims_array.data(),
                                  out_dims_array.data(),
                                  max_dim,
                                  axis);

    out->set_dims(make_ddim(out_dims_array));
    out->share_lod(x);
  }

  out->set_dtype(DataType::BOOL);
}

void CompareAllInferMeta(const MetaTensor& x,
                         const MetaTensor& y,
                         MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_y = y.dims();
  PADDLE_ENFORCE_GE(
      dim_x.size(),
      dim_y.size(),
      errors::InvalidArgument(
          "The size of dim_y should not be greater than dim_x's."));
  out->share_lod(x);
  out->set_dims(make_ddim({1}));
  out->set_dtype(DataType::BOOL);
}

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
void CrossInferMeta(const MetaTensor& x,
                    const MetaTensor& y,
                    int axis,
                    MetaTensor* out) {
  auto x_dim = x.dims();
  auto y_dim = y.dims();
  auto dim = axis;

  bool dims_match = phi::funcs::CheckDims(x_dim, y_dim);
  PADDLE_ENFORCE_EQ(
      dims_match,
      true,
      phi::errors::InvalidArgument("The 'shape' of Input(X) should be equal to "
                                   "the 'shape' of Input(Y). But received "
                                   "Input(X).dimensions = [%s], "
                                   "Input(Y).dimensions = [%s]",
                                   x_dim,
                                   y_dim));

  if (dim != DDim::kMaxRank) {
    PADDLE_ENFORCE_EQ(
        dim < x_dim.size() && dim >= (0 - x_dim.size()),
        true,
        phi::errors::OutOfRange(
            "Attr(dim) is out of range, It's expected "
            "to be in range of [-%d, %d]. But received Attr(dim) = %d.",
            x_dim.size(),
            x_dim.size() - 1,
            dim));
    if (dim < 0) {
      dim += x_dim.size();
    }
    PADDLE_ENFORCE_EQ(x_dim[dim] == 3 && y_dim[dim] == 3,
                      true,
                      phi::errors::InvalidArgument(
                          "Input(X/Y).dims()[dim] should be equal to 3."
                          "But received Input(X/Y).dims()[dim] = %d.",
                          x_dim[dim]));
  }
  out->set_dims(x_dim);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

void DistInferMeta(const MetaTensor& x,
                   const MetaTensor& y,
                   float p,
                   MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  PADDLE_ENFORCE_NE(phi::product(x_dims),
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(X) has not been initialized properly. The "
                        "shape of Input(X) = [%s].",
                        x_dims));
  PADDLE_ENFORCE_NE(phi::product(y_dims),
                    0,
                    phi::errors::InvalidArgument(
                        "The Input(Y) has not been initialized properly. The "
                        "shape of Input(Y) = [%s].",
                        y_dims));
  out->set_dims({1});
  out->set_dtype(x.dtype());
}

381 382
void DotInferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
  auto x_dims = x.dims();
383 384 385
  auto x_rank = static_cast<size_t>(x_dims.size());
  PADDLE_ENFORCE_EQ(true,
                    1 == x_rank || 2 == x_rank,
386
                    phi::errors::PreconditionNotMet(
387 388 389 390
                        "ShapeError: The dimensions of input tensor X (%s) "
                        "should be 1 or 2",
                        x_dims.to_str()));

391
  auto y_dims = y.dims();
392 393
  PADDLE_ENFORCE_EQ(
      true,
394
      x_rank == static_cast<size_t>(y_dims.size()),
395
      phi::errors::PreconditionNotMet(
396 397 398 399 400 401 402 403 404 405 406 407 408 409
          "ShapeError: The shape of input tensor Y: %s should match with "
          "input tenosr X: %s",
          y_dims.to_str(),
          x_dims.to_str()));
  bool shape_match = true;
  for (size_t i = 0; i < x_rank; ++i) {
    if (x_dims[i] != y_dims[i]) {
      shape_match = false;
      break;
    }
  }

  PADDLE_ENFORCE_EQ(true,
                    shape_match,
410
                    phi::errors::PreconditionNotMet(
411 412 413 414 415 416 417
                        "ShapeError: The shape of input tensor X: %s should "
                        "be exactly the same "
                        "with input tensor Y: %s",
                        x_dims.to_str(),
                        y_dims.to_str()));

  x_dims[x_dims.size() - 1] = 1;
418 419 420
  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
421 422
}

423 424 425 426 427
void ElementwiseInferMeta(const MetaTensor& x,
                          const MetaTensor& y,
                          MetaTensor* out) {
  return ElementwiseRawInferMeta(x, y, -1, std::move(out));
}
428

429 430 431 432 433 434 435
void ElementwiseRawInferMeta(const MetaTensor& x,
                             const MetaTensor& y,
                             int axis,
                             MetaTensor* out) {
  if (x.dims() != y.dims()) {
    auto x_dims = x.dims();
    auto y_dims = y.dims();
436 437 438 439
    int max_dim = std::max(x_dims.size(), y_dims.size());
    if (x_dims.size() == y_dims.size()) {
      PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0),
                        true,
440
                        phi::errors::InvalidArgument(
441 442 443 444 445 446 447 448 449
                            "axis should be -1 or 0 while the dimension of "
                            "tensor X (%s) is equal to the dimension of "
                            "tensor Y (%s), but received axis: %s",
                            x_dims.size(),
                            y_dims.size(),
                            axis));
    }
    PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim),
                      true,
450
                      phi::errors::InvalidArgument(
451 452 453 454 455 456 457 458 459 460
                          "The axis range must be [%s, %s), but axis is %s. "
                          "Please set the axis again.",
                          -1 * max_dim,
                          max_dim,
                          axis));
    axis = (axis < 0 ? (std::abs(x_dims.size() - y_dims.size()) + axis + 1)
                     : axis);
    std::vector<int> x_dims_array(max_dim);
    std::vector<int> y_dims_array(max_dim);
    std::vector<int> out_dims_array(max_dim);
461 462 463
    funcs::GetBroadcastDimsArrays(x_dims,
                                  y_dims,
                                  x_dims_array.data(),
464 465 466 467 468 469
                                  y_dims_array.data(),
                                  out_dims_array.data(),
                                  max_dim,
                                  axis);
    auto out_dims = phi::make_ddim(out_dims_array);
    out->set_dims(out_dims);
0
0x45f 已提交
470
  } else {
471
    out->set_dims(x.dims());
0
0x45f 已提交
472 473
  }

Z
Zhong Hui 已提交
474
  out->set_dtype(x.dtype());
475 476
  out->set_layout(x.layout());
  out->share_lod(x);
Z
Zhong Hui 已提交
477 478
}

C
Chen Weihang 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
void GatherInferMeta(const MetaTensor& x,
                     const MetaTensor& index,
                     const Scalar& axis,
                     MetaTensor* out) {
  auto index_dims = index.dims();

  if (index_dims.size() == 2) {
    PADDLE_ENFORCE_EQ(
        index_dims[1],
        1,
        phi::errors::InvalidArgument(
            "The last dim of index should be 1 when it is 2D, but we get %d",
            index_dims[1]));
  } else {
    PADDLE_ENFORCE_EQ(
        index_dims.size(),
        1,
        phi::errors::InvalidArgument(
            "The index should be 1D, when it is not 2D, but we get %d",
            index_dims.size()));
  }

  auto input_dim = x.dims();
  auto axis_v = axis.to<int>();
  if (axis.FromTensor() || axis_v == 0) {
    // if axis.FromTensor(), we can not obtain correct shape of output
    int batch_size = index_dims[0];
    phi::DDim output_dims(input_dim);
    output_dims[0] = batch_size;
    out->set_dims(output_dims);
    out->set_dtype(x.dtype());
    out->share_lod(x);
  } else {
    int index_size = index_dims[0];
    std::vector<int> out_dim_vec;
    for (int i = 0; i < axis_v; i++) {
      out_dim_vec.push_back(input_dim[i]);
    }
    out_dim_vec.push_back(index_size);
    for (int i = axis_v + 1; i < input_dim.size(); i++) {
      out_dim_vec.push_back(input_dim[i]);
    }
    auto output_dims = phi::make_ddim(out_dim_vec);
    out->set_dims(output_dims);
    out->set_dtype(x.dtype());
    out->share_lod(x);
  }
}

528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560
void GatherNdInferMeta(const MetaTensor& x,
                       const MetaTensor& index,
                       MetaTensor* out) {
  auto x_dims = x.dims();
  auto x_dims_size = x_dims.size();
  auto index_dims = index.dims();
  auto index_dims_size = index_dims.size();

  PADDLE_ENFORCE_LE(
      index_dims[index_dims_size - 1],
      x_dims_size,
      phi::errors::InvalidArgument(
          "Input(Index).shape[-1] should be no greater than Input(X).rank"));
  PADDLE_ENFORCE_GE(index_dims_size,
                    1UL,
                    phi::errors::InvalidArgument(
                        "The rank of Input(Index) should be greater than 1"));

  std::vector<int64_t> result_dims;
  // The result dims is
  //   Index.shape[:-1] + X.shape[Index.shape[-1]:]
  for (int i = 0; i < index_dims_size - 1; ++i) {
    result_dims.emplace_back(index_dims[i]);
  }
  for (int i = index_dims[index_dims_size - 1]; i < x_dims_size; ++i) {
    result_dims.emplace_back(x_dims[i]);
  }

  out->set_dims(phi::make_ddim(result_dims));
  out->share_lod(x);
  out->set_dtype(x.dtype());
}

C
crystal 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573
void GatherTreeMeta(const MetaTensor& ids,
                    const MetaTensor& parents,
                    MetaTensor* out) {
  auto ids_dims = ids.dims();
  auto parents_dims = parents.dims();
  PADDLE_ENFORCE_EQ(ids_dims == parents_dims,
                    true,
                    phi::errors::InvalidArgument(
                        "The shape of Input(Parents) must be same with the "
                        "shape of Input(Ids)."));
  out->set_dims(ids_dims);
}

574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645
void HuberLossInferMeta(const MetaTensor& input,
                        const MetaTensor& label,
                        float delta,
                        MetaTensor* out,
                        MetaTensor* residual,
                        MetaConfig config) {
  auto input_dims = input.dims();
  auto label_dims = label.dims();

  PADDLE_ENFORCE_EQ(input_dims.size(),
                    label_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(input) rank and Input(label) rank should be "
                        "same, but received input rank(%d) != label rank(%d)",
                        input_dims.size(),
                        label_dims.size()));

  bool contain_unknown_dim = phi::contain_unknown_dim(input_dims) ||
                             phi::contain_unknown_dim(label_dims);
  if (config.is_runtime || !contain_unknown_dim) {
    PADDLE_ENFORCE_EQ(
        input_dims,
        label_dims,
        phi::errors::InvalidArgument(
            "The Input(input) and Input(label) should have the same "
            "shape, but received input shape [%s] != label shape [%s]",
            input_dims,
            label_dims));
  }

  auto out_dims = label_dims;
  residual->set_dims(out_dims);
  out->set_dims(out_dims);
  out->share_lod(input);
}

void IndexSampleInferMeta(const MetaTensor& x,
                          const MetaTensor& y,
                          MetaTensor* out,
                          MetaConfig config) {
  auto input_dims = x.dims();
  PADDLE_ENFORCE_EQ(input_dims.size(),
                    2,
                    errors::InvalidArgument(
                        "Inputs(X) shape of IndexSample op should be 2-D, but "
                        "got X's shape = [%s], please check X shape.",
                        input_dims));

  auto index_dims = y.dims();
  PADDLE_ENFORCE_EQ(
      index_dims.size(),
      2,
      errors::InvalidArgument(
          "Inputs(Index) shape of IndexSample op should be 2-D, but "
          "got Index's shape [%s] , please check index shape.",
          input_dims));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(input_dims[0],
                      index_dims[0],
                      errors::InvalidArgument(
                          "Inputs(X)'s value of dimension 0 must same with "
                          "Inputs(Index)'s value of dimension 0, but "
                          "got %d of Inputs(X), and got %d of Inputs(Index), "
                          "please check Inputs shape.",
                          input_dims[0],
                          index_dims[0]));
  }
  out->set_dtype(x.dtype());
  out->set_dims(index_dims);
  out->share_lod(y);
}

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
void LogLossInferMeta(const MetaTensor& input,
                      const MetaTensor& label,
                      float epsilon,
                      MetaTensor* out,
                      MetaConfig config) {
  auto pred_dims = input.dims();
  auto label_dims = label.dims();

  if (config.is_runtime ||
      (phi::product(pred_dims) > 0 && phi::product(label_dims) > 0)) {
    PADDLE_ENFORCE_EQ(
        pred_dims,
        label_dims,
        phi::errors::InvalidArgument(
            "The dimensions of Input(Predicted) must be equal to the"
            "dimensions of Input(Labels), but received dimensions of "
            "Input(Predicted)"
            "is [%s], received dimensions of Input(Labels) is [%s].",
            pred_dims,
            label_dims));
  }
  PADDLE_ENFORCE_EQ(pred_dims.size(),
                    2,
                    phi::errors::InvalidArgument(
                        "The dimensions of Input(Predicted) must be 2,"
                        "But received dimensions of Input(Predicted)"
                        "is [%d]",
                        pred_dims.size()));
  if (config.is_runtime) {
    PADDLE_ENFORCE_EQ(pred_dims[1],
                      1,
                      phi::errors::InvalidArgument(
                          "Each row of Input(Predicted) contains a real value, "
                          "so the 2nd dimension of Input(X) must be 1,"
                          "But got [%d]",
                          pred_dims[1]));
  }
  out->set_dims({pred_dims[0], 1});
  out->set_dtype(input.dtype());
  out->share_lod(input);
}

688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
void MatmulInferMeta(const MetaTensor& x,
                     const MetaTensor& y,
                     bool trans_x,
                     bool trans_y,
                     MetaTensor* out) {
  std::vector<int64_t> dims_x = phi::vectorize(x.dims());
  std::vector<int64_t> dims_y = phi::vectorize(y.dims());
  auto ndims_x = dims_x.size();
  auto ndims_y = dims_y.size();
  PADDLE_ENFORCE_GT(ndims_x,
                    0UL,
                    phi::errors::InvalidArgument(
                        "The Input(x) dims size must be greater than 0,"
                        " but reviced dims size is 0. "));
  PADDLE_ENFORCE_GT(ndims_y,
                    0UL,
                    phi::errors::InvalidArgument(
                        "The Input(y) dims size must be greater than 0,"
                        " but reviced dims size is 0. "));

  bool x_broadcasted = false, y_broadcasted = false;
  if (ndims_x == 1) {
    dims_x.insert(dims_x.begin(), 1);
    ndims_x = 2;
    x_broadcasted = true;
  }

  if (ndims_y == 1) {
    dims_y.push_back(1);
    ndims_y = 2;
    y_broadcasted = true;
  }

  size_t M, N;
  if (trans_x) {
    M = dims_x[ndims_x - 1];
  } else {
    M = dims_x[ndims_x - 2];
  }
  if (trans_y) {
    N = dims_y[ndims_y - 2];
  } else {
    N = dims_y[ndims_y - 1];
  }

  std::vector<int64_t> new_dims;
  if (ndims_x > ndims_y) {
    new_dims.assign(dims_x.begin(), dims_x.end() - 2);
  } else if (ndims_x < ndims_y) {
    new_dims.assign(dims_y.begin(), dims_y.end() - 2);
  } else {
    new_dims.reserve(ndims_x);
    for (size_t i = 0; i < ndims_x - 2; ++i) {
      new_dims.push_back(std::max(dims_x[i], dims_y[i]));
    }
  }
  if (!x_broadcasted) {
    new_dims.push_back(M);
  }
  if (!y_broadcasted) {
    new_dims.push_back(N);
  }
  if (x_broadcasted && y_broadcasted) {
    new_dims.push_back(1);
  }

  auto ddim_out = phi::make_ddim(new_dims);

  out->set_dims(ddim_out);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
}

F
furnace 已提交
761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790
void MvInferMeta(const MetaTensor& x, const MetaTensor& vec, MetaTensor* out) {
  auto dim_x = x.dims();
  auto dim_vec = vec.dims();
  PADDLE_ENFORCE_EQ(
      dim_x.size(),
      2,
      phi::errors::InvalidArgument("The rank of input X should be 2, but is %d",
                                   dim_x.size()));
  PADDLE_ENFORCE_EQ(
      dim_vec.size(),
      1,
      phi::errors::InvalidArgument(
          "The rank of input Vec should be 1, but is %d", dim_vec.size()));
  PADDLE_ENFORCE_EQ(dim_x[1],
                    dim_vec[0],
                    phi::errors::InvalidArgument(
                        "X's second dimension is expected to be equal to "
                        "Vec's first dimension"
                        "but recieved X'shape = [%s], Vec's shape = [%s]",
                        dim_x,
                        dim_vec));

  auto dim_out = phi::make_ddim({dim_x[0]});

  out->set_dims(dim_out);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());
  out->share_lod(x);
}

791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
void SegmentPoolInferMeta(const MetaTensor& x,
                          const MetaTensor& segment_ids,
                          const std::string& pooltype,
                          MetaTensor* out,
                          MetaTensor* summed_ids,
                          MetaConfig config) {
  auto dims = x.dims();
  dims[0] = -1;
  out->set_dims(dims);
  out->set_dtype(x.dtype());
  out->set_layout(x.layout());

  if (pooltype == "MEAN") {
    summed_ids->set_dims({-1, 1});
    summed_ids->set_dtype(x.dtype());
    summed_ids->set_layout(x.layout());
  }
}

810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
                                            const MetaTensor& label,
                                            bool normalize,
                                            int ignore_index,
                                            MetaTensor* out,
                                            MetaConfig config) {
  auto x_dims = x.dims();
  auto labels_dims = label.dims();
  int rank = x_dims.size();
  PADDLE_ENFORCE_EQ(rank,
                    labels_dims.size(),
                    phi::errors::InvalidArgument(
                        "Input(X) and Input(Label) shall have the same rank."
                        "But received: the rank of Input(X) is [%d], "
                        "the rank of Input(Label) is [%d].",
                        rank,
                        labels_dims.size()));

  bool check = true;
  if ((!config.is_runtime) &&
      (phi::product(x_dims) <= 0 || phi::product(labels_dims) <= 0)) {
    check = false;
  }

  if (check) {
    PADDLE_ENFORCE_EQ(
        phi::slice_ddim(x_dims, 0, rank),
        phi::slice_ddim(labels_dims, 0, rank),
        phi::errors::InvalidArgument(
            "Input(X) and Input(Label) shall have the same shape "
            "except the last dimension. But received: the shape of "
            "Input(X) is [%s], the shape of Input(Label) is [%s].",
            x_dims,
            labels_dims));
  }

  out->set_dims(x_dims);
  out->set_dtype(x.dtype());
  out->share_lod(x);
}

851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909
void TriangularSolveInferMeta(const MetaTensor& x,
                              const MetaTensor& y,
                              bool upper,
                              bool transpose,
                              bool unitriangular,
                              MetaTensor* out) {
  auto x_dims = x.dims();
  auto y_dims = y.dims();

  auto x_dims_n = x_dims.size();
  auto y_dims_n = y_dims.size();

  PADDLE_ENFORCE_GE(x_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "The input tensor X's dimensions of TriangularSolveOp "
                        "should be >= 2. But received X's "
                        "dimensions = %d, X's shape = [%s]",
                        x_dims.size(),
                        x_dims));

  PADDLE_ENFORCE_GE(y_dims_n,
                    2,
                    phi::errors::InvalidArgument(
                        "The input tensor Y's dimensions of TriangularSolveOp "
                        "should be >=2. But received Y's "
                        "dimensions = %d, Y's shape = [%s]",
                        y_dims.size(),
                        y_dims));

  PADDLE_ENFORCE_EQ(x_dims[x_dims_n - 2],
                    x_dims[x_dims_n - 1],
                    phi::errors::InvalidArgument(
                        "The inner-most 2 dimensions of Input(X) all should "
                        "be square matrices "
                        "But received X's shape[-2] = %d and shape[-1] = %d.",
                        x_dims[x_dims_n - 2],
                        x_dims[x_dims_n - 1]));

  std::vector<int64_t> x_dims_vec = phi::vectorize(x_dims);
  std::vector<int64_t> y_dims_vec = phi::vectorize(y_dims);

  std::vector<int64_t> x_dims_vec_cut(x_dims_vec.begin(), x_dims_vec.end() - 2);
  std::vector<int64_t> y_dims_vec_cut(y_dims_vec.begin(), y_dims_vec.end() - 2);

  std::vector<int64_t> expand_batch_portion =
      funcs::MatrixGetBroadcastBatchPortion(x_dims_vec_cut, y_dims_vec_cut);

  std::vector<int64_t> y_broadcast_dims({expand_batch_portion});
  y_broadcast_dims.insert(y_broadcast_dims.end(),
                          {y_dims_vec[y_dims_n - 2], y_dims_vec[y_dims_n - 1]});

  // dim of 'out' is the same with 'Y' after broadcast
  out->set_dims(phi::make_ddim(y_broadcast_dims));
  out->set_dtype(y.dtype());
  out->set_layout(y.layout());
  out->share_lod(y);
}

C
Chen Weihang 已提交
910 911 912 913 914 915 916 917 918 919
void ValueCompareInferMeta(const MetaTensor& x,
                           const MetaTensor& y,
                           MetaTensor* out,
                           MetaConfig config) {
  detail::BinarySameInputDimsCheck(x, y, config);

  out->set_dims(x.dims());
  out->set_dtype(DataType::BOOL);
}

920
}  // namespace phi
921 922

PD_REGISTER_INFER_META_FN(add_raw, phi::ElementwiseRawInferMeta);