fused_bn_activation_op.h 3.6 KB
Newer Older
Z
Zhen Wang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include <memory>
#include <string>
#include <unordered_map>
#include "paddle/fluid/framework/grad_op_desc_maker.h"
#include "paddle/fluid/framework/op_proto_maker.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor.h"
24
#include "paddle/fluid/framework/var_type_inference.h"
Z
Zhen Wang 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

namespace paddle {
namespace operators {
using Tensor = framework::Tensor;

class FusedBatchNormActOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override;
};

class FusedBatchNormActGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override;
};

class FusedBatchNormActOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override;
};

template <typename T>
class FusedBatchNormActGradOpMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
65
  void Apply(GradOpPtr<T> op) const override {
Z
Zhen Wang 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    op->SetInput("Y", this->Output("Y"));
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));

    op->SetInput("Scale", this->Input("Scale"));
    op->SetInput("Bias", this->Input("Bias"));
    op->SetInput("SavedMean", this->Output("SavedMean"));
    op->SetInput("SavedVariance", this->Output("SavedVariance"));
    op->SetInput("ReserveSpace", this->Output("ReserveSpace"));

    op->SetAttrMap(this->Attrs());

    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Scale"), this->InputGrad("Scale"));
    op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
  }
};

class FusedBatchNormActOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Y"}};
  }
};

template <typename DeviceContext, typename T>
class FusedBatchNormActKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override;
};

template <typename DeviceContext, typename T>
class FusedBatchNormActGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override;
};

}  // namespace operators
}  // namespace paddle