sum_op.cc 13.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13

14
#include <algorithm>
M
minqiyang 已提交
15
#include <memory>
16
#include <string>
17
#include <unordered_map>
18
#include <vector>
19

Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/var_type_inference.h"
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
25
#include "paddle/fluid/framework/convert_utils.h"
26

27 28 29 30 31 32 33 34
namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

35
  void InferShape(framework::InferShapeContext* ctx) const override {
36 37
    OP_INOUT_CHECK(ctx->HasInputs("X"), "Input", "X", "sum");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "sum");
38

39 40
    if (ctx->IsRuntime() && ctx->GetOutputsVarType("Out")[0] ==
                                framework::proto::VarType::LOD_TENSOR_ARRAY) {
41 42
      return;  // skip runtime infershape when is tensor array;
    }
43

44
    auto x_var_types = ctx->GetInputsVarType("X");
45
    auto x_dims = ctx->GetInputsDim("X");
46

47 48
    auto N = x_dims.size();
    PADDLE_ENFORCE_GT(
49 50
        N,
        0,
51 52 53 54
        platform::errors::InvalidArgument(
            "The input tensor X's dimensions of SumOp "
            "should be larger than 0. But received X's dimensions %d, "
            "X's shape = [%s].",
55 56
            N,
            &x_dims));
57
    if (N == 1) {
58
      VLOG(3) << "Warning: SumOp have only one input, may waste memory";
59
    }
Q
qiaolongfei 已提交
60

61
    framework::DDim in_dim({0});
62
    for (size_t i = 0; i < x_dims.size(); ++i) {
63 64 65 66
      auto& x_dim = x_dims[i];
      // x_dim.size() == 1 means the real dim of selected rows is [0]
      if (x_var_types[i] == framework::proto::VarType::SELECTED_ROWS &&
          x_dim.size() == 1) {
67 68
        continue;
      }
69
      if (phi::product(x_dim) == 0) {
70 71
        continue;
      }
72
      if (phi::product(in_dim) == 0) {
73 74
        in_dim = x_dim;
      } else {
Z
zhaoyuchen 已提交
75
        if (ctx->IsRuntime()) {
76 77
          PADDLE_ENFORCE_EQ(in_dim,
                            x_dim,
78 79 80 81
                            platform::errors::InvalidArgument(
                                "The input tensor X of SumOp must"
                                " have same shape. But received X[0]'s shape = "
                                "[%s], X[%d]'s shape = [%s].",
82 83 84
                                in_dim,
                                i,
                                x_dim));
Z
zhaoyuchen 已提交
85
        } else {
86
          PADDLE_ENFORCE_EQ(
87 88
              in_dim.size(),
              x_dim.size(),
89 90 91 92 93
              platform::errors::InvalidArgument(
                  "The input tensor X of SumOp must have same "
                  "dimensions. But received X[0]'s dimensions = %d, X[0]'s "
                  "shape = "
                  "[%s], X[%d]'s dimensions = %d, X[%d]'s shape = [%s].",
94 95 96 97 98 99
                  in_dim.size(),
                  in_dim,
                  i,
                  x_dim.size(),
                  i,
                  x_dim));
Z
zhaoyuchen 已提交
100
          // if in_dim or x_dim has -1, not check equal
101 102
          for (int j = 0; j < x_dim.size(); ++j) {
            if (x_dim[j] == -1 || in_dim[j] == -1) {
Z
zhaoyuchen 已提交
103 104
              continue;
            }
105
            PADDLE_ENFORCE_EQ(
106 107
                in_dim[j],
                x_dim[j],
108 109 110 111
                platform::errors::InvalidArgument(
                    "The input tensor X of SumOp must have same shape "
                    "if not -1."
                    "But received X[0]'s shape = [%s], X[%d]'s shape = [%s].",
112 113 114
                    in_dim,
                    i,
                    x_dim));
Z
zhaoyuchen 已提交
115 116
          }
        }
117
      }
Q
qijun 已提交
118
    }
Q
Qiao Longfei 已提交
119 120
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
121
  }
122 123

 protected:
124
  framework::OpKernelType GetExpectedKernelType(
125 126
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
H
hong 已提交
127
    auto x_vars_name = ctx.InputNames("X");
128 129 130 131

    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

132
    PADDLE_ENFORCE_GT(
133 134
        x_vars.size(),
        0,
135
        platform::errors::InvalidArgument("Input[X] should not be empty"));
L
Leo Chen 已提交
136 137

    PADDLE_ENFORCE_NOT_NULL(
138 139 140
        x_vars[0],
        platform::errors::NotFound("Input var[%s] should not be nullptr",
                                   x_vars_name[0]));
L
Leo Chen 已提交
141

142
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
143
      int dtype = -1;
C
chengduo 已提交
144
      for (size_t idx = 0; idx < x_vars.size(); ++idx) {
145 146 147 148
        PADDLE_ENFORCE_NOT_NULL(
            x_vars[idx],
            platform::errors::NotFound("Input var[%s] should not be nullptr",
                                       x_vars_name[idx]));
C
chengduo 已提交
149 150
        auto tensor =
            framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
151
        if (tensor->numel() <= 0 || (!tensor->IsInitialized())) {
152 153 154
          continue;
        }
        if (dtype == -1) {
155
          dtype = framework::TransToProtoVarType(tensor->dtype());
156
        } else {
157 158
          PADDLE_ENFORCE_EQ(dtype,
                            framework::TransToProtoVarType(tensor->dtype()),
159 160
                            platform::errors::InvalidArgument(
                                "The inputs type of sum op must be same"));
161 162
        }
      }
163 164
      PADDLE_ENFORCE_NE(dtype,
                        -1,
165 166
                        platform::errors::InvalidArgument(
                            "Sum operator should have at least one tensor"));
167

168
      auto data_type = static_cast<framework::proto::VarType::Type>(dtype);
169 170
#ifdef PADDLE_WITH_MKLDNN
      if (library == framework::LibraryType::kPlain &&
171 172 173
          this->CanMKLDNNBeUsed(ctx, data_type) &&
          (data_type == framework::proto::VarType::FP32 ||
           data_type == framework::proto::VarType::BF16) &&
174
          ctx.OutputVar("Out")->IsType<framework::LoDTensor>()) {
175 176 177 178 179 180
        if (std::all_of(
                x_vars.begin(), x_vars.end(), [](const framework::Variable* v) {
                  return v->IsType<framework::LoDTensor>();
                })) {
          return framework::OpKernelType(data_type,
                                         ctx.GetPlace(),
181 182
                                         framework::DataLayout::kMKLDNN,
                                         framework::LibraryType::kMKLDNN);
183 184 185 186
        }
      }
#endif

187 188
      return framework::OpKernelType(
          data_type, ctx.GetPlace(), layout, library);
189
    } else if (x_vars[0]->IsType<phi::SelectedRows>()) {
190
      for (auto& var : x_vars) {
191
        auto& value = var->Get<phi::SelectedRows>().value();
192
        if (value.IsInitialized()) {
193 194
          return framework::OpKernelType(
              framework::TransToProtoVarType(value.dtype()),
195 196 197
              ctx.device_context(),
              layout,
              library);
198 199 200 201
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
202 203 204
                                     ctx.device_context(),
                                     layout,
                                     library);
205
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
206 207 208
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
209
          if (each.numel() != 0 && each.IsInitialized()) {
210 211
            return framework::OpKernelType(
                framework::TransToProtoVarType(each.dtype()),
212 213 214
                ctx.device_context(),
                layout,
                library);
Y
Yang Yang(Tony) 已提交
215
          }
216 217
        }
      }
218 219 220 221 222
      PADDLE_THROW(platform::errors::InvalidArgument(
          "Expected each tensor in Input(x) in sum op has be initialized, but "
          "some tensor in Input(x) is not be initialized, please check your "
          "code.",
          framework::ToTypeName(x_vars[0]->Type())));
223
    }
224 225 226 227 228
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Expected type of Input(X) must be Tensor,  SelectedRows or "
        "LodTensorArray. But got "
        "unsupport type: %s.",
        framework::ToTypeName(x_vars[0]->Type())));
229
  }
230 231 232 233
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
234
  void Make() override {
235 236 237 238 239
    AddInput("X",
             "A Varaible list. The shape and data type of the list elements"
             "should be consistent. Variable can be multi-dimensional Tensor"
             "or LoDTensor, and data types can be: float32, float64, int32, "
             "int64.")
240
        .AsDuplicable();
241 242 243
    AddOutput("Out",
              "the sum of input :code:`x`. its shape and data types are "
              "consistent with :code:`x`.");
244 245 246
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
J
Jacek Czaja 已提交
247 248 249 250 251
    AddAttr<std::string>(
        "mkldnn_data_type",
        "(string, default \"float32\"). Data type of mkldnn kernel")
        .SetDefault("float32")
        .InEnum({"float32", "bfloat16"});
252 253 254
    AddComment(R"DOC(This OP is used to sum one or more Tensor or LoDTensor
                    of the input. If the input is LoDTensor, the output only
                    shares LoD information with the first input.)DOC");
255 256 257
  }
};

Q
QI JUN 已提交
258 259
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
260
  void operator()(framework::InferVarTypeContext* ctx) const override {
261 262 263 264 265 266 267 268
    if (!ctx->IsDygraph()) {
      auto var_type = framework::proto::VarType::SELECTED_ROWS;
      if (VLOG_IS_ON(10)) {
        for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
          VLOG(10) << ctx->InputVarName("X", ind) << " "
                   << ctx->GetInputType("X", ind);
        }
      }
269

270 271 272 273 274 275 276 277 278 279 280
      if (ctx->InputTypeAnyOf("X",
                              framework::proto::VarType::LOD_TENSOR_ARRAY)) {
        if (!ctx->InputTypeAllOf("X",
                                 framework::proto::VarType::LOD_TENSOR_ARRAY)) {
          std::ostringstream os;
          for (size_t ind = 0; ind < ctx->InputSize("X"); ++ind) {
            os << "    " << ctx->InputVarName("X", ind) << " type is "
               << ctx->GetInputType("X", ind) << "\n";
          }
          PADDLE_THROW(platform::errors::InvalidArgument(
              "Not all inputs are tensor array:\n%s", os.str()));
Y
Yang Yang(Tony) 已提交
281
        }
282 283 284 285
        var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
      } else if (ctx->InputTypeAnyOf("X",
                                     framework::proto::VarType::LOD_TENSOR)) {
        var_type = framework::proto::VarType::LOD_TENSOR;
Y
Yang Yang(Tony) 已提交
286
      }
Q
QI JUN 已提交
287

288 289 290
      ctx->SetOutputType("Out", var_type);
      ctx->SetOutputDataType("Out", ctx->GetInputDataType("X"));
    }
Q
QI JUN 已提交
291 292 293
  }
};

H
hong 已提交
294
class SumGradDescMaker : public framework::GradOpDescMakerBase {
295
 public:
296
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
297

Y
Yu Yang 已提交
298
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
299
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
300
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
301 302
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
303 304 305
    std::transform(x_grads.begin(),
                   x_grads.end(),
                   std::back_inserter(grad_ops),
306
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
307
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
308 309 310 311
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
312
                     return std::unique_ptr<framework::OpDesc>(grad_op);
313
                   });
H
hong 已提交
314 315 316 317 318 319 320 321 322

    return grad_ops;
  }
};

class SumGradOpBaseMaker : public imperative::GradOpBaseMakerBase {
 public:
  using imperative::GradOpBaseMakerBase::GradOpBaseMakerBase;

323
  std::shared_ptr<imperative::GradOpNode> operator()() const override {
H
hong 已提交
324
    auto x_grads = InputGrad("X", false);
325 326
    using InputGradsType = decltype(x_grads);

327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
    if (!x_grads.empty()) {
      auto node = this->NewGradNode();
      node->reserve(x_grads.size());
      auto og = OutputGrad("Out");
      for (auto& x_grad : x_grads) {
        imperative::TracedGradOp op(node);
        op.SetType("scale");
        op.SetInput("X", og);
        op.SetOutput("Out", InputGradsType{x_grad});
        op.SetAttr("scale", 1.0f);
      }
      return node;
    } else {
      return nullptr;
    }
342 343 344
  }
};

345
DECLARE_INPLACE_OP_INFERER(SumInplaceInferer, {"X", "Out"});
346

347 348 349 350
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
351

352 353 354 355 356 357
REGISTER_OPERATOR(sum,
                  ops::SumOp,
                  ops::SumOpMaker,
                  ops::SumGradDescMaker,
                  ops::SumGradOpBaseMaker,
                  ops::SumOpVarTypeInference,
358
                  ops::SumInplaceInferer);
359

Q
QI JUN 已提交
360
REGISTER_OP_CPU_KERNEL(
361 362
    sum,
    ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
Q
QI JUN 已提交
363 364
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
365 366
    ops::SumKernel<paddle::platform::CPUDeviceContext,
                   paddle::platform::bfloat16>,
Q
QI JUN 已提交
367
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);