pad3d_op.cc 6.9 KB
Newer Older
L
littletomatodonkey 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <memory>
#include <string>
#include <vector>
19

20
#include "paddle/fluid/framework/infershape_utils.h"
L
littletomatodonkey 已提交
21
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/phi/infermeta/unary.h"
23
#include "paddle/phi/kernels/funcs/math_function.h"
L
littletomatodonkey 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142

namespace paddle {
namespace operators {

using framework::Tensor;

class Pad3dOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
  }
};

class Pad3dOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input of pad3d op. "
             "The input should be a 5-D tensor with formate NCDHW or NDHWC.");
    AddOutput("Out",
              "The output of pad3d op. "
              "A tensor with the same shape as X.");
    AddInput("Paddings",
             "A 1-D tensor to describe the padding rules."
             "paddings=[0, 1, 2, 3, 4, 5] means "
             "padding 0 column to left, 1 column to right, "
             "2 row to top, 3 row to bottom, 4 depth to front "
             "and 5 depth to back. Size of paddings must be 6.")
        .AsDispensable();
    AddAttr<std::vector<int>>(
        "paddings",
        "(vector<int>) "
        "A list<int> to describe the padding rules."
        "paddings=[0, 1, 2, 3, 4, 5] means "
        "padding 0 column to left, 1 column to right, "
        "2 row to top, 3 row to bottom, 4 depth to front "
        "and 5 depth to back. Size of paddings must be 6.");
    AddAttr<float>("value",
                   "(float, default 0.0) "
                   "The value to fill the padded areas in constant mode.")
        .SetDefault(0.0f);
    AddAttr<std::string>(
        "mode",
        "(string, default constant) "
        "Four modes: constant(default), reflect, replicate, circular.")
        .SetDefault("constant");
    AddAttr<std::string>(
        "data_format",
        "(string, default NCDHW) Only used in "
        "An optional string from: \"NDHWC\", \"NCDHW\". "
        "Defaults to \"NDHWC\". Specify the data format of the input data.")
        .SetDefault("NCDHW");
    AddComment(R"DOC(
Pad3d Operator.
Pad 3-d images according to 'paddings' and 'mode'. 
If mode is 'reflect', paddings[0] and paddings[1] must be no greater
than width-1. The height and depth dimension have the same condition.

Given that X is a channel of image from input:

X = [[[[[1, 2, 3],
     [4, 5, 6]]]]]

Case 0:

paddings = [2, 2, 1, 1, 0, 0],
mode = 'constant'
pad_value = 0

Out = [[[[[0. 0. 0. 0. 0. 0. 0.]
          [0. 0. 1. 2. 3. 0. 0.]
          [0. 0. 4. 5. 6. 0. 0.]
          [0. 0. 0. 0. 0. 0. 0.]]]]]

Case 1:

paddings = [2, 2, 1, 1, 0, 0],
mode = 'reflect'

Out = [[[[[6. 5. 4. 5. 6. 5. 4.]
          [3. 2. 1. 2. 3. 2. 1.]
          [6. 5. 4. 5. 6. 5. 4.]
          [3. 2. 1. 2. 3. 2. 1.]]]]]

Case 2:

paddings = [2, 2, 1, 1, 0, 0],
mode = 'replicate'

Out = [[[[[1. 1. 1. 2. 3. 3. 3.]
          [1. 1. 1. 2. 3. 3. 3.]
          [4. 4. 4. 5. 6. 6. 6.]
          [4. 4. 4. 5. 6. 6. 6.]]]]]

Case 3:

paddings = [2, 2, 1, 1, 0, 0],
mode = 'circular'

Out = [[[[[5. 6. 4. 5. 6. 4. 5.]
          [2. 3. 1. 2. 3. 1. 2.]
          [5. 6. 4. 5. 6. 4. 5.]
          [2. 3. 1. 2. 3. 1. 2.]]]]]

)DOC");
  }
};

class Pad3dOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Pad3d@Grad");
143 144 145 146
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   framework::GradVarName("Out"),
                   "Pad3d@Grad");
L
littletomatodonkey 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }
};

template <typename T>
class Pad3dOpGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> bind) const override {
    bind->SetInput("X", this->Input("X"));
    if (this->HasInput("Paddings")) {
      bind->SetInput("Paddings", this->Input("Paddings"));
    }
    bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    bind->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    bind->SetAttrMap(this->Attrs());
    bind->SetType("pad3d_grad");
  }
};

C
ceci3 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
template <typename T>
class Pad3dOpDoubleGradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

  void Apply(GradOpPtr<T> grad_op) const override {
    if (this->HasInput("Paddings")) {
      grad_op->SetInput("Paddings", this->Input("Paddings"));
    }
    grad_op->SetType("pad3d");
    grad_op->SetInput("X", this->OutputGrad(framework::GradVarName("X")));
    grad_op->SetOutput("Out", this->InputGrad(framework::GradVarName("Out")));
    grad_op->SetAttrMap(this->Attrs());
  }
};

L
littletomatodonkey 已提交
198 199 200 201 202 203 204
DECLARE_NO_NEED_BUFFER_VARS_INFERER(Pad3dOpGradNoNeedBufferVarsInferer, "X");

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

205 206
DECLARE_INFER_SHAPE_FUNCTOR(pad3d,
                            Pad3dInferShapeFunctor,
207 208
                            PD_INFER_META(phi::Pad3dInferMeta));

209 210 211
REGISTER_OPERATOR(pad3d,
                  ops::Pad3dOp,
                  ops::Pad3dOpMaker,
L
littletomatodonkey 已提交
212
                  ops::Pad3dOpGradMaker<paddle::framework::OpDesc>,
213 214
                  ops::Pad3dOpGradMaker<paddle::imperative::OpBase>,
                  Pad3dInferShapeFunctor);
215 216
REGISTER_OPERATOR(pad3d_grad,
                  ops::Pad3dOpGrad,
C
ceci3 已提交
217 218
                  ops::Pad3dOpDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::Pad3dOpDoubleGradMaker<paddle::imperative::OpBase>,
L
littletomatodonkey 已提交
219
                  ops::Pad3dOpGradNoNeedBufferVarsInferer);