reshape_mkldnn_op.cc 18.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/fluid/operators/flatten_op.h"
16 17 18
#include "paddle/fluid/operators/squeeze_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

19 20 21 22 23 24 25 26 27 28 29
namespace {
enum class ReshapeKernelOpName {
  reshape,
  reshape2,
  squeeze,
  squeeze2,
  flatten,
  flatten2,
};
}  // anonymous namespace

30 31 32 33 34
namespace paddle {
namespace operators {

using paddle::framework::LoDTensor;
using platform::GetMKLDNNFormat;
35
using platform::to_void_cast;
36

J
jakpiase 已提交
37 38 39 40 41 42 43
static std::vector<int> extract_shape(
    const std::vector<const Tensor*>& list_new_shape_tensor) {
  std::vector<int> vec_new_shape;
  vec_new_shape.reserve(list_new_shape_tensor.size());

  for (const auto& tensor : list_new_shape_tensor) {
    PADDLE_ENFORCE_EQ(
44 45
        tensor->dims(),
        phi::make_ddim({1}),
J
jakpiase 已提交
46 47 48 49 50 51 52 53 54 55 56
        platform::errors::InvalidArgument(
            "If the element type of 'shape' in ReshapeOp is Tensor, "
            "the element's shape must be [1]. But received the element's shape "
            "is [%s]",
            tensor->dims()));
    vec_new_shape.emplace_back(*tensor->data<int32_t>());
  }

  return vec_new_shape;
}

57
template <typename T, ReshapeKernelOpName op_name>
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* x = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");

73 74
    framework::DDim x_dims, out_dims;
    InferInOutShape(ctx, x_dims, out_dims);
75

76
    auto x_vec_dims = phi::vectorize(x_dims);
77

78 79 80
    dnnl::memory::data_type x_type =
        framework::ToMKLDNNDataType(framework::TransToProtoVarType(x->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
81 82 83
        x_vec_dims,
        framework::TransToProtoVarType(x->dtype()),
        x_type,
84
        onednn_engine);
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        x->format(), platform::to_void_cast(x->data<T>()));
    out->Resize(x_dims);  // to match x numel, format is changed later
    // reorder is done into a plain tag to allow usage with blocked formats
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        out, getPlainFormatTag(x), ctx.GetPlace());
    auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                    reorder_dst_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);

    astream.wait();

    out->Resize(out_dims);
    out->set_layout(framework::DataLayout::kMKLDNN);
102
    out->set_format(GetMKLDNNFormat(
103
        reorder_dst_memory_p->get_desc().reshape(phi::vectorize(out_dims))));
104 105
  }

106
  void InferInOutShape(const framework::ExecutionContext& ctx,
107 108
                       framework::DDim& x_dims,            // NOLINT
                       framework::DDim& out_dims) const {  // NOLINT
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeSqueezeOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeSqueeze2Op(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeFlattenOp(ctx, x_dims, out_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape kernel doesn not support that operator name"));
    }
  }

  void InferShapeReshapeOp(const framework::ExecutionContext& ctx,
135 136
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
137 138 139 140 141 142 143 144
    auto* x = ctx.Input<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
    x_dims = x->dims();
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  void InferShapeReshape2Op(const framework::ExecutionContext& ctx,
145 146
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
147 148 149
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* xshape = ctx.Output<LoDTensor>("XShape");
    auto xshape_dims = xshape->dims();
150
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
151 152 153 154 155 156
    out_dims = out->dims();
    ChangeReshapeOutDimsIfNeeded(ctx, x_dims, out_dims);
  }

  // in reshape1/2 ops  "ShapeTensor" has highest priority and "Shape" has
  // second highest priority
157 158 159 160
  void ChangeReshapeOutDimsIfNeeded(
      const framework::ExecutionContext& ctx,
      framework::DDim& x_dims,            // NOLINT
      framework::DDim& out_dims) const {  // NOLINT
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    auto list_new_shape_tensor = ctx.MultiInput<Tensor>("ShapeTensor");
    if (list_new_shape_tensor.size() > 0) {
      auto new_shape = extract_shape(list_new_shape_tensor);
      out_dims = ValidateShape(new_shape, x_dims);
    } else if (ctx.HasInput("Shape")) {
      auto* shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
      auto* shape_data = shape_tensor->data<int>();

      auto shape =
          std::vector<int>(shape_data, shape_data + shape_tensor->numel());
      out_dims = ValidateShape(shape, x_dims);
    }
  }

  void InferShapeSqueezeOp(const framework::ExecutionContext& ctx,
176 177
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
178 179 180 181 182 183 184
    auto* x = ctx.Input<LoDTensor>("X");
    x_dims = x->dims();
    const auto& axes = ctx.Attr<std::vector<int>>("axes");
    out_dims = GetOutputShape(axes, x_dims, true);
  }

  void InferShapeSqueeze2Op(const framework::ExecutionContext& ctx,
185 186
                            framework::DDim& x_dims,            // NOLINT
                            framework::DDim& out_dims) const {  // NOLINT
187 188 189
    auto* out = ctx.Output<LoDTensor>("Out");
    auto* xshape = ctx.Output<LoDTensor>("XShape");
    auto xshape_dims = xshape->dims();
190
    x_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
191 192 193 194
    out_dims = out->dims();
  }

  void InferShapeFlattenOp(const framework::ExecutionContext& ctx,
195 196
                           framework::DDim& x_dims,            // NOLINT
                           framework::DDim& out_dims) const {  // NOLINT
197 198 199
    auto x = ctx.Input<LoDTensor>("X");
    x_dims = x->dims();
    auto axes = ctx.Attr<int>("axis");
200
    out_dims = phi::make_ddim(
201 202 203 204
        FlattenKernel<platform::CPUDeviceContext, float>::GetOutputShape(
            axes, x_dims));
  }

205
 protected:
206
  static dnnl::memory::format_tag getPlainFormatTag(const Tensor* tensor) {
207 208
    auto tensor_dims_size = tensor->dims().size();
    PADDLE_ENFORCE_EQ(
209 210
        tensor_dims_size <= 6 && tensor_dims_size >= 1,
        true,
211 212 213 214 215
        platform::errors::InvalidArgument(
            "Dims for squeeze_grad oneDNN op must be in range <1, 6>"));

    switch (tensor_dims_size) {
      case 1:
216
        return dnnl::memory::format_tag::a;
217
      case 2:
218
        return dnnl::memory::format_tag::ab;
219
      case 3:
220
        return dnnl::memory::format_tag::abc;
221
      case 4:
222
        return dnnl::memory::format_tag::abcd;
223
      case 5:
224
        return dnnl::memory::format_tag::abcde;
225
      default:
226
        return dnnl::memory::format_tag::abcdef;
227 228 229 230 231
    }
  }

  static framework::DDim ValidateShape(const std::vector<int>& shape,
                                       const framework::DDim& in_dims) {
232 233
    const int64_t in_size = phi::product(in_dims);
    auto in_dims_vec = phi::vectorize(in_dims);
234 235
    bool all_positive = std::all_of(in_dims_vec.cbegin(),
                                    in_dims_vec.cend(),
236 237 238 239 240 241 242 243 244 245 246 247
                                    [](int64_t i) { return i > 0; });
    // only one dimension can be set to -1, whose size will be automatically
    // infered
    const int64_t unk_dim_val = -1;
    const int64_t copy_dim_val = 0;

    std::vector<int64_t> output_shape(shape.size(), 0);
    int64_t capacity = 1;
    int unk_dim_idx = -1;
    for (size_t i = 0; i < shape.size(); ++i) {
      if (shape[i] == unk_dim_val) {
        PADDLE_ENFORCE_EQ(
248 249
            unk_dim_idx,
            -1,
250 251 252
            platform::errors::InvalidArgument(
                "Only one dimension value of 'shape' in ReshapeOp can "
                "be -1. But received shape = [%s], shape[%d] is also -1.",
253 254
                phi::make_ddim(shape),
                i));
255 256 257
        unk_dim_idx = i;
      } else if (shape[i] == copy_dim_val) {
        PADDLE_ENFORCE_LT(
258 259
            static_cast<int>(i),
            in_dims.size(),
260 261 262 263 264
            platform::errors::InvalidArgument(
                "The index of 0 in `shape` must be less than "
                "the input tensor X's dimensions. "
                "But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
                "X's dimensions = %d.",
265 266 267 268
                phi::make_ddim(shape),
                i,
                in_dims,
                in_dims.size()));
269 270
      } else {
        PADDLE_ENFORCE_GT(
271 272
            shape[i],
            0,
273 274 275 276
            platform::errors::InvalidArgument(
                "Each dimension value of 'shape' in ReshapeOp must not "
                "be negative except one unknown dimension. "
                "But received  shape = [%s], shape[%d] = %d.",
277 278 279
                phi::make_ddim(shape),
                i,
                shape[i]));
280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
      }

      capacity *= (shape[i] ? shape[i] : in_dims[i]);
      output_shape[i] =
          (shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
    }

    if (unk_dim_idx != -1) {
      if (all_positive) {
        // in_size < 0 and is un-determinate in compile time, skip the check,
        // for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
        // capacity = -24, in_size = -8, output_shape[0] = 0
        // the following check will fail.
        output_shape[unk_dim_idx] = -in_size / capacity;
        PADDLE_ENFORCE_EQ(
295 296
            output_shape[unk_dim_idx] * capacity,
            -in_size,
297 298 299 300 301 302
            platform::errors::InvalidArgument(
                "The 'shape' attribute in ReshapeOp is invalid. "
                "The input tensor X'size must be divisible by known "
                "capacity of 'shape'. "
                "But received X's shape = [%s], X's size = %d, "
                "'shape' is [%s], known capacity of 'shape' is %d.",
303 304 305 306
                in_dims,
                in_size,
                phi::make_ddim(shape),
                capacity));
307 308 309 310 311 312
      } else {
        output_shape[unk_dim_idx] = -1;
      }
    } else {
      if (all_positive) {
        PADDLE_ENFORCE_EQ(
313 314
            capacity,
            in_size,
315 316 317 318 319 320
            platform::errors::InvalidArgument(
                "The 'shape' in ReshapeOp is invalid. "
                "The input tensor X'size must be equal to the capacity of "
                "'shape'. "
                "But received X's shape = [%s], X's size = %d, 'shape' is "
                "[%s], the capacity of 'shape' is %d.",
321 322 323 324
                in_dims,
                in_size,
                phi::make_ddim(shape),
                capacity));
325 326
      }
    }
327
    return phi::make_ddim(output_shape);
328 329 330
  }
};

331 332
template <typename T, ReshapeKernelOpName op_name>
class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T, op_name> {
333 334 335 336 337 338 339 340 341 342 343 344 345 346
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    RunKernel(ctx);
  }

 private:
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& onednn_engine = dev_ctx.GetEngine();

    auto* dout = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

347 348 349
    framework::DDim dx_dims;
    InferOutputShapeInGrad(ctx, dx_dims);

350
    auto dout_vec_dims = phi::vectorize(dout->dims());
351

352 353 354
    dnnl::memory::data_type dout_type = framework::ToMKLDNNDataType(
        framework::TransToProtoVarType(dout->dtype()));
    platform::ReorderMKLDNNHandler reorder_handler(
355 356 357
        dout_vec_dims,
        framework::TransToProtoVarType(dout->dtype()),
        dout_type,
358
        onednn_engine);
359 360 361 362 363 364 365 366 367 368 369 370

    auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
        dout->format(), platform::to_void_cast(dout->data<T>()));
    auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
        dx, this->getPlainFormatTag(dout), ctx.GetPlace());
    auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
                                                    reorder_dst_memory_p);

    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
    reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
    astream.wait();

371
    dx->Resize(dx_dims);
372
    dx->set_layout(framework::DataLayout::kMKLDNN);
373
    dx->set_format(GetMKLDNNFormat(
374
        reorder_dst_memory_p->get_desc().reshape(phi::vectorize(dx_dims))));
375 376
  }

377
  void InferOutputShapeInGrad(const framework::ExecutionContext& ctx,
378
                              framework::DDim& x_dims) const {  // NOLINT
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
    switch (op_name) {
      case ReshapeKernelOpName::reshape:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::reshape2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze:
        InferShapeReshapeSqueezeGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::squeeze2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten:
        InferShapeFlattenGradOp(ctx, x_dims);
        break;
      case ReshapeKernelOpName::flatten2:
        InferShapeReshape2Squeeze2Flatten2GradOp(ctx, x_dims);
        break;
      default:
        PADDLE_THROW(paddle::platform::errors::OutOfRange(
            "Reshape grad kernel doesn not support that operator name"));
    }
  }
403

404 405 406
  void InferShapeReshapeSqueezeGradOp(
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
407 408 409
    auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));
    dx_dims = dx->dims();
  }
410

411
  void InferShapeReshape2Squeeze2Flatten2GradOp(
412 413
      const framework::ExecutionContext& ctx,
      framework::DDim& dx_dims) const {  // NOLINT
414
    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
415
    dx_dims = phi::slice_ddim(xshape_dims, 1, xshape_dims.size());
416
  }
417

418
  void InferShapeFlattenGradOp(const framework::ExecutionContext& ctx,
419
                               framework::DDim& dx_dims) const {  // NOLINT
420 421 422 423 424
    dx_dims = ctx.Input<LoDTensor>("X")->dims();
  }
};
}  // namespace operators
}  // namespace paddle
425

426 427
namespace ops = paddle::operators;
REGISTER_OP_KERNEL(
428 429 430
    squeeze,
    MKLDNN,
    paddle::platform::CPUPlace,
431 432 433 434 435
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
436 437 438
    squeeze_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
439 440 441 442 443
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze>);

REGISTER_OP_KERNEL(
444 445 446
    squeeze2,
    MKLDNN,
    paddle::platform::CPUPlace,
447 448 449 450 451
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
452 453 454
    squeeze2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
455 456 457 458 459
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::squeeze2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::squeeze2>);

REGISTER_OP_KERNEL(
460 461 462
    reshape,
    MKLDNN,
    paddle::platform::CPUPlace,
463 464 465 466 467
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
468 469 470
    reshape_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
471 472 473 474 475
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape>);

REGISTER_OP_KERNEL(
476 477 478
    reshape2,
    MKLDNN,
    paddle::platform::CPUPlace,
479 480 481 482 483
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
484 485 486
    reshape2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
487 488 489 490 491
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::reshape2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::reshape2>);

REGISTER_OP_KERNEL(
492 493 494
    flatten,
    MKLDNN,
    paddle::platform::CPUPlace,
495 496 497 498 499
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
500 501 502
    flatten_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
503 504 505 506 507
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten>);

REGISTER_OP_KERNEL(
508 509 510
    flatten2,
    MKLDNN,
    paddle::platform::CPUPlace,
511 512 513 514 515
    ops::ReshapeMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16,
                             ReshapeKernelOpName::flatten2>);

REGISTER_OP_KERNEL(
516 517 518
    flatten2_grad,
    MKLDNN,
    paddle::platform::CPUPlace,
519 520 521
    ops::ReshapeGradMKLDNNKernel<float, ReshapeKernelOpName::flatten2>,
    ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16,
                                 ReshapeKernelOpName::flatten2>);