grid_sampler_op.cc 7.6 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
16
#include <string>
17

18
#include "paddle/fluid/framework/infershape_utils.h"
D
dengkaipeng 已提交
19
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22 23 24
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
D
dengkaipeng 已提交
25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class GridSampleOp : public framework::OperatorWithKernel {
32 33 34 35 36 37 38
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
39
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
40 41
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
42
    }
43
#endif
44
    return framework::OpKernelType(
45 46 47 48
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.GetPlace(),
        framework::DataLayout::kAnyLayout,
        library_);
49
  }
D
dengkaipeng 已提交
50 51 52
};

class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
53 54 55 56 57 58 59 60 61
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input data of GridSampleOp, "
             "This is a 4-D tensor with shape of [N, C, H, W]");
    AddInput(
        "Grid",
        "(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
        "This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
T
tianshuo78520a 已提交
62
        "of x and y coordinates with shape [N, H, W] in last dimension");
63 64 65 66
    AddOutput("Output", "(Tensor) Output tensor with shape [N, C, H, W]");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default true) Only used in cudnn kernel, need install cudnn")
67 68
        .SetDefault(true)
        .AsExtra();
69

70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    AddAttr<bool>(
        "align_corners",
        "(bool, default true) If align_corners is true, it will project"
        "-1 and 1 to the centers of the corner pixels. Otherwise, it will "
        "project"
        "-1 and 1 to the image edges.")
        .SetDefault(true);

    AddAttr<std::string>(
        "mode",
        "(bool, default true) The interpolation method which can be 'bilinear'"
        " or 'nearest'.")
        .SetDefault("bilinear");

    AddAttr<std::string>(
        "padding_mode",
        "(bool, default true) The padding method used when source"
87
        "index is out of input images. It can be 'zeros', 'reflection' and "
88 89 90
        "'border'.")
        .SetDefault("zeros");

91
    AddComment(R"DOC(
92
      This operation samples input X by using bilinear or nearest interpolation based on 
T
tianshuo78520a 已提交
93
      flow field grid, which is usually generated by affine_grid. The grid of
94 95
      shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
      with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
T
tianshuo78520a 已提交
96 97
      (in width dimension) of input data x and grid_y is indexing the 3rd 
      dimension (in height dimension), finally results is the bilinear 
98
      interpolation value or nearest value of 4 nearest corner points.
99

100
      For bilinear interpolation mode:
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
      Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

      Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
        interpolate point value by 4 nearest points.

          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn

        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord

        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side

        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value

        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
        )DOC");
139
  }
D
dengkaipeng 已提交
140 141 142
};

class GridSampleOpGrad : public framework::OperatorWithKernel {
143
 public:
D
dengkaipeng 已提交
144 145
  using framework::OperatorWithKernel::OperatorWithKernel;

146 147 148 149
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
150
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
151 152
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
153
    }
154
#endif
155
    return framework::OpKernelType(
156 157 158 159
        OperatorWithKernel::IndicateVarDataType(ctx, "X"),
        ctx.GetPlace(),
        framework::DataLayout::kAnyLayout,
        library_);
160
  }
D
dengkaipeng 已提交
161 162
};

H
hong 已提交
163 164
template <typename T>
class GridSampleGradMaker : public framework::SingleGradOpMaker<T> {
165
 public:
H
hong 已提交
166
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
167 168

 protected:
169
  void Apply(GradOpPtr<T> op) const override {
170
    op->SetType("grid_sampler_grad");
H
hong 已提交
171 172 173
    op->SetInput("X", this->Input("X"));
    op->SetInput("Grid", this->Input("Grid"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
174

H
hong 已提交
175
    op->SetAttrMap(this->Attrs());
176

H
hong 已提交
177 178
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
179
  }
D
dengkaipeng 已提交
180 181
};

182 183
}  // namespace operators
}  // namespace paddle
D
dengkaipeng 已提交
184 185

namespace ops = paddle::operators;
186 187
DECLARE_INFER_SHAPE_FUNCTOR(grid_sampler,
                            GridSamplerInferShapeFunctor,
188
                            PD_INFER_META(phi::GridSampleBaseInferMeta));
189 190 191
REGISTER_OPERATOR(grid_sampler,
                  ops::GridSampleOp,
                  ops::GridSampleOpMaker,
H
hong 已提交
192
                  ops::GridSampleGradMaker<paddle::framework::OpDesc>,
193 194
                  ops::GridSampleGradMaker<paddle::imperative::OpBase>,
                  GridSamplerInferShapeFunctor);
195 196
DECLARE_INFER_SHAPE_FUNCTOR(grid_sampler_grad,
                            GridSamplerGradInferShapeFunctor,
197
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
198 199
REGISTER_OPERATOR(grid_sampler_grad,
                  ops::GridSampleOpGrad,
200
                  GridSamplerGradInferShapeFunctor);
D
dengkaipeng 已提交
201

202 203 204 205 206 207 208
REGISTER_OP_VERSION(grid_sampler)
    .AddCheckpoint(
        R"ROC(
      Upgrade grid_sampler add a new attribute [mode].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "mode", "In order to specify interpolation mode", "bilinear"));