random_op.cc 3.4 KB
Newer Older
D
dongzhihong 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

D
dongzhihong 已提交
15
#include "paddle/operators/random_op.h"
D
dongzhihong 已提交
16
#include "glog/logging.h"
D
dongzhihong 已提交
17 18 19 20
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {
D
dongzhihong 已提交
21

D
dongzhihong 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
template <typename T>
class GaussianRandomOpKernel<platform::CPUPlace, T>
    : public framework::OpKernel {
public:
  void Compute(const framework::KernelContext& context) const override {
    auto mean = context.op_.GetAttr<T>("mean");
    auto std = context.op_.GetAttr<T>("std");
    // auto seed = context.op_.GetAttr<T>("seed");
    auto* output = context.Output(0)->GetMutable<framework::Tensor>();
    T* r = output->mutable_data<T>(context.GetPlace());
    auto ctx =
        static_cast<const platform::CPUDeviceContext*>(context.device_context_);
    // generator need to modify context
    auto g = const_cast<platform::CPUDeviceContext*>(ctx)->RandGenerator();
    std::normal_distribution<T> distribution(mean, std);
    for (int i = 0; i < framework::product(output->dims()); ++i) {
      r[i] = distribution(g);
    }
  }
};

class GaussianRandomOp : public framework::OperatorWithKernel {
D
dongzhihong 已提交
44 45 46 47 48 49
protected:
  void InferShape(
      const std::vector<const framework::Tensor*>& inputs,
      const std::vector<framework::Tensor*>& outputs) const override {
    PADDLE_ENFORCE(inputs.size() == 0, "Input size of RandomOp must be zero.");
    PADDLE_ENFORCE(outputs.size() == 1, "Output size of RandomOp must be one.");
D
dongzhihong 已提交
50 51
    PADDLE_ENFORCE(outputs[0] != nullptr,
                   "Outputs of RandomOp must all be set.");
D
dongzhihong 已提交
52 53
    outputs[0]->Resize(
        framework::make_ddim(this->GetAttr<std::vector<int>>("shape")));
D
dongzhihong 已提交
54 55 56
  }
};

D
dongzhihong 已提交
57
class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker {
D
dongzhihong 已提交
58
public:
D
dongzhihong 已提交
59 60
  GaussianRandomOpMaker(framework::OpProto* proto,
                        framework::OpAttrChecker* op_checker)
D
dongzhihong 已提交
61
      : framework::OpProtoAndCheckerMaker(proto, op_checker) {
D
dongzhihong 已提交
62
    AddAttr<std::vector<int>>("shape", "The shape of matrix to be randomized");
D
dongzhihong 已提交
63
    // AddAttr<float>("seed", "random seed generator.").SetDefault(1337);
D
dongzhihong 已提交
64 65 66 67 68 69
    AddAttr<float>("mean", "mean value of random.").SetDefault(.0);
    AddAttr<float>("std", "minimum value of random value")
        .SetDefault(1.0)
        .LargerThan(.0);
    AddOutput("Out", "output matrix of random op");
    AddComment(R"DOC(
D
dongzhihong 已提交
70 71
GaussianRandom Operator fill a matrix in normal distribution.
The eqution : Out = GaussianRandom(Shape=(d0, d1, ...), Dtype, mean, std)
D
dongzhihong 已提交
72 73 74 75 76 77 78
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
79 80 81
REGISTER_OP(gaussian_random,
            paddle::operators::GaussianRandomOp,
            paddle::operators::GaussianRandomOpMaker);
D
dongzhihong 已提交
82

D
dongzhihong 已提交
83 84 85 86
typedef paddle::operators::GaussianRandomOpKernel<paddle::platform::CPUPlace,
                                                  float>
    GaussianRandomOpKernel_CPU_float;
REGISTER_OP_CPU_KERNEL(gaussian_random, GaussianRandomOpKernel_CPU_float);