elementwise_op.h 12.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
gongweibao 已提交
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
gongweibao 已提交
6

7
    http://www.apache.org/licenses/LICENSE-2.0
G
gongweibao 已提交
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
gongweibao 已提交
14 15

#pragma once
C
chengduo 已提交
16

17
#include <string>
18
#include "paddle/fluid/framework/data_layout.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
C
chengduo 已提交
21

22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
G
gongweibao 已提交
25 26 27 28 29 30 31 32 33

namespace paddle {
namespace operators {

class ElementwiseOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  using Tensor = framework::Tensor;
C
chengduo 已提交
34 35

  void InferShape(framework::InferShapeContext *ctx) const override {
M
minqiyang 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
    if (!ctx->IsRuntime()) {
      PADDLE_ENFORCE(ctx->HasInput("X"),
                     "Input(X) of elementwise op should not be null.");
      PADDLE_ENFORCE(ctx->HasInput("Y"),
                     "Input(Y) of elementwise op should not be null.");
      PADDLE_ENFORCE(ctx->HasOutput("Out"),
                     "Output(Out) of elementwise op should not be null.");

      PADDLE_ENFORCE(ctx->GetInputsVarType("Y").front() ==
                         framework::proto::VarType::LOD_TENSOR,
                     "The input var's type should be LoDTensor, but the "
                     "received is %s [%s]",
                     ctx->GetInputsVarType("Y").front(),
                     ctx->Inputs("Y").front());

      if (ctx->GetInputsVarType("X").front() ==
          framework::proto::VarType::LOD_TENSOR) {
        auto x_dim = ctx->GetInputDim("X");
        auto y_dim = ctx->GetInputDim("Y");
        PADDLE_ENFORCE_GE(x_dim.size(), y_dim.size(),
                          "Rank of first input must >= rank of second input.");
      } else if (ctx->GetInputsVarType("X").front() ==
                 framework::proto::VarType::SELECTED_ROWS) {
        PADDLE_ENFORCE((ctx->GetInputDim("Y").size() == 1u) &&
                           (ctx->GetInputDim("Y")[0] == 1),
                       "For elementwise_op, if X is Sparse, "
                       "Y must be scalar.");
      } else {
        PADDLE_THROW("X's type[%s] is not supported by elementwise_op.",
                     ctx->GetInputsVarType("X").front());
      }
C
chengduo 已提交
67
    }
68 69

    ctx->ShareDim("X", /*->*/ "Out");
Q
Qiao Longfei 已提交
70
    ctx->ShareLoD("X", /*->*/ "Out");
G
gongweibao 已提交
71
  }
72 73

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
74 75
      const framework::ExecutionContext &ctx) const override {
    auto input_data_type = framework::GetDataTypeOfVar(ctx.InputVar("X"));
76 77 78 79 80 81 82 83 84 85

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
86 87
};

C
chengduo 已提交
88 89 90 91 92 93
class ElementwiseOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
94 95 96
  }
};

G
gongweibao 已提交
97 98
class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
99
  void Make() final {
C
caoying03 已提交
100 101
    AddInput("X", "(Tensor), The first input tensor of elementwise op.");
    AddInput("Y", "(Tensor), The second input tensor of elementwise op.");
102
    AddOutput("Out", "The output of elementwise op.");
G
gongweibao 已提交
103
    AddAttr<int>("axis",
C
caoying03 已提交
104 105
                 "(int, default -1). The start dimension index "
                 "for broadcasting Y onto X.")
G
gongweibao 已提交
106 107
        .SetDefault(-1)
        .EqualGreaterThan(-1);
108 109
    AddAttr<bool>("use_mkldnn", "(bool, default false). Used by MKLDNN.")
        .SetDefault(false);
110
    AddAttr<std::string>(
111 112 113 114 115 116
        "x_data_format",
        "(string, default NCHW) Only used in mkldnn"
        "An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
        "Defaults to \"\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("");
117
    AddAttr<std::string>(
118 119 120 121 122 123
        "y_data_format",
        "(string, default \"\") Only used in mkldnn"
        "An optional string from: \"NHWC\", \"NCHW\", \"NCHW16C\", \"NCHW8C\". "
        "Defaults to \"\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("");
Y
Yu Yang 已提交
124
    AddComment(string::Sprintf(R"DOC(
T
Tao Luo 已提交
125
Elementwise %s Operator
K
kexinzhao 已提交
126 127 128

The equation is:

Y
Yu Yang 已提交
129
$$%s$$
K
kexinzhao 已提交
130

M
minqiyang 已提交
131
- $X$: a tensor of any dimension.
L
Luo Tao 已提交
132
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
K
kexinzhao 已提交
133 134

There are two cases for this operator:
135

L
Luo Tao 已提交
136 137
1. The shape of $Y$ is the same with $X$.
2. The shape of $Y$ is a continuous subsequence of $X$.
K
kexinzhao 已提交
138 139

For case 2:
140

M
minqiyang 已提交
141 142
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
   for broadcasting $Y$ onto $X$.
L
Luo Tao 已提交
143
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
M
minqiyang 已提交
144
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
L
Luo Tao 已提交
145
   subsequence, such as shape(Y) = (2, 1) => (2).
K
kexinzhao 已提交
146

L
Luo Tao 已提交
147
For example:
148

149
  .. code-block:: python
G
gongweibao 已提交
150

151 152
    shape(X) = (2, 3, 4, 5), shape(Y) = (,)
    shape(X) = (2, 3, 4, 5), shape(Y) = (5,)
L
Luo Tao 已提交
153
    shape(X) = (2, 3, 4, 5), shape(Y) = (4, 5), with axis=-1(default) or axis=2
154 155
    shape(X) = (2, 3, 4, 5), shape(Y) = (3, 4), with axis=1
    shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
156
    shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
157

M
minqiyang 已提交
158
The inputs $X$ and $Y$ can carry the different LoD information.
L
Luo Tao 已提交
159
But the output only shares the LoD information with the input $X$.
K
kexinzhao 已提交
160

Y
Yu Yang 已提交
161 162
)DOC",
                               GetName(), GetEquation()));
G
gongweibao 已提交
163 164 165
  }

 protected:
Y
Yu Yang 已提交
166
  virtual std::string GetName() const = 0;
C
chengduo 已提交
167

Y
Yu Yang 已提交
168
  virtual std::string GetEquation() const = 0;
G
gongweibao 已提交
169 170 171 172 173 174 175
};

class ElementwiseOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  using Tensor = framework::Tensor;

C
chengduo 已提交
176
  void InferShape(framework::InferShapeContext *ctx) const override {
Q
Qiao Longfei 已提交
177 178 179 180 181 182 183 184
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
    auto out_dims = ctx->GetInputDim(framework::GradVarName("Out"));
G
gongweibao 已提交
185 186

    PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(),
187
                      "Rank of first input must >= rank of second input.");
G
gongweibao 已提交
188

Q
Qiao Longfei 已提交
189 190 191
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(x_grad_name)) {
192 193
      ctx->ShareDim("X", /*->*/ x_grad_name);
      ctx->ShareLoD("X", /*->*/ x_grad_name);
G
gongweibao 已提交
194
    }
Q
Qiao Longfei 已提交
195
    if (ctx->HasOutput(y_grad_name)) {
196 197
      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
G
gongweibao 已提交
198 199
    }
  }
200 201

  framework::OpKernelType GetExpectedKernelType(
C
chengduo 已提交
202
      const framework::ExecutionContext &ctx) const override {
203 204
    auto input_data_type = framework::ToDataType(
        ctx.Input<Tensor>(framework::GradVarName("Out"))->type());
205 206 207 208 209 210 211 212 213 214

#ifdef PADDLE_WITH_MKLDNN
    if (platform::CanMKLDNNBeUsed(ctx)) {
      return framework::OpKernelType(input_data_type, ctx.GetPlace(),
                                     framework::DataLayout::kMKLDNN,
                                     framework::LibraryType::kMKLDNN);
    }
#endif
    return framework::OpKernelType(input_data_type, ctx.GetPlace());
  }
G
gongweibao 已提交
215
};
216 217 218 219 220 221 222 223

// For Add, Sub op, the X, Out is not needed.
class ElementwiseOpExplicitGrad : public ElementwiseOpGrad {
 public:
  using operators::ElementwiseOpGrad::ElementwiseOpGrad;
  using operators::ElementwiseOpGrad::GetExpectedKernelType;
  using Tensor = framework::Tensor;

C
chengduo 已提交
224
  void InferShape(framework::InferShapeContext *ctx) const override {
225 226 227 228 229
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");

    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
230 231
      ctx->ShareDim(framework::GradVarName("Out"), /*->*/ x_grad_name);
      ctx->ShareLoD(framework::GradVarName("Out"), /*->*/ x_grad_name);
232 233 234 235
    }
    auto y_grad_name = framework::GradVarName("Y");
    if (ctx->HasOutput(y_grad_name)) {
      PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
236 237 238

      ctx->ShareDim("Y", /*->*/ y_grad_name);
      ctx->ShareLoD("Y", /*->*/ y_grad_name);
239 240 241 242
    }
  }
};

243 244 245
template <typename T>
class ElemwiseGradKernel : public framework::OpKernel<T> {
 public:
C
chengduo 已提交
246 247
  void Compute(const framework::ExecutionContext &context) const override {
    auto *dx =
248 249
        context.Output<framework::LoDTensor>(framework::GradVarName("X"));
    if (dx != nullptr) {
C
chengduo 已提交
250
      auto &dout =
251 252 253 254 255 256
          *context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
      dx->set_lod(dout.lod());
    }
  }
};

G
gongweibao 已提交
257 258
}  // namespace operators
}  // namespace paddle
Y
Yu Yang 已提交
259

260 261 262 263 264 265 266 267 268 269 270
/*
*/

#define REGISTER_ELEMWISE_GRAD_MAKER(kernel_type, op_name)                   \
  class kernel_type##GradMaker                                               \
      : public paddle::framework::SingleGradOpDescMaker {                    \
   public:                                                                   \
    using ::paddle::framework::SingleGradOpDescMaker::SingleGradOpDescMaker; \
                                                                             \
   protected:                                                                \
    std::unique_ptr<paddle::framework::OpDesc> Apply() const override {      \
C
chengduo 已提交
271
      auto *op = new paddle::framework::OpDesc();                            \
272 273 274 275 276 277 278 279 280 281 282
      op->SetType(#kernel_type "_grad");                                     \
      op->SetInput("Y", Input("Y"));                                         \
      op->SetInput(::paddle::framework::GradVarName("Out"),                  \
                   OutputGrad("Out"));                                       \
      op->SetAttrMap(Attrs());                                               \
      op->SetOutput(::paddle::framework::GradVarName("X"), InputGrad("X"));  \
      op->SetOutput(::paddle::framework::GradVarName("Y"), InputGrad("Y"));  \
      return std::unique_ptr<::paddle::framework::OpDesc>(op);               \
    }                                                                        \
  }

Y
Yu Yang 已提交
283 284 285 286 287 288 289 290 291
#define REGISTER_ELEMWISE_OP(op_type, op_name, equation)                \
  class __ElemwiseOp##op_type##Maker__                                  \
      : public ::paddle::operators::ElementwiseOpMaker {                \
   protected:                                                           \
    virtual std::string GetName() const { return op_name; }             \
    virtual std::string GetEquation() const { return equation; }        \
  };                                                                    \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,        \
                    __ElemwiseOp##op_type##Maker__,                     \
292
                    ::paddle::operators::ElementwiseOpInferVarType,     \
Y
Yu Yang 已提交
293 294
                    ::paddle::framework::DefaultGradOpDescMaker<true>); \
  REGISTER_OPERATOR(op_type##_grad, ::paddle::operators::ElementwiseOpGrad)
295 296 297 298 299 300 301 302 303 304 305 306 307 308

#define REGISTER_ELEMWISE_EXPLICIT_OP(op_type, op_name, equation, ...) \
  class __ElemwiseOp##op_type##Maker__                                 \
      : public ::paddle::operators::ElementwiseOpMaker {               \
   protected:                                                          \
    virtual std::string GetName() const { return op_name; }            \
    virtual std::string GetEquation() const { return equation; }       \
  };                                                                   \
  REGISTER_OPERATOR(op_type, ::paddle::operators::ElementwiseOp,       \
                    __ElemwiseOp##op_type##Maker__,                    \
                    ::paddle::operators::ElementwiseOpInferVarType,    \
                    op_type##GradMaker);                               \
  REGISTER_OPERATOR(op_type##_grad,                                    \
                    ::paddle::operators::ElementwiseOpExplicitGrad)