data_feeder.py 23.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import core
18
import numpy as np
C
chengduoZH 已提交
19
import os
20 21
import six
from six.moves import zip, range, xrange
Y
yuyang18 已提交
22
import multiprocessing
23
import warnings
Y
Yu Yang 已提交
24

25
from .framework import Variable, default_main_program, _current_expected_place, in_dygraph_mode
C
chengduo 已提交
26
from .framework import _cpu_num, _cuda_ids
Y
Yu Yang 已提交
27 28 29
__all__ = ['DataFeeder']


S
sneaxiy 已提交
30
def convert_dtype(dtype):
P
pkpk 已提交
31
    if isinstance(dtype, core.VarDesc.VarType):
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
        if dtype == core.VarDesc.VarType.BOOL:
            return 'bool'
        elif dtype == core.VarDesc.VarType.FP16:
            return 'float16'
        elif dtype == core.VarDesc.VarType.FP32:
            return 'float32'
        elif dtype == core.VarDesc.VarType.FP64:
            return 'float64'
        elif dtype == core.VarDesc.VarType.INT8:
            return 'int8'
        elif dtype == core.VarDesc.VarType.INT16:
            return 'int16'
        elif dtype == core.VarDesc.VarType.INT32:
            return 'int32'
        elif dtype == core.VarDesc.VarType.INT64:
            return 'int64'
        elif dtype == core.VarDesc.VarType.UINT8:
            return 'uint8'
50 51 52
    elif isinstance(dtype, type):
        if dtype in [
                np.bool, np.float16, np.float32, np.float64, np.int8, np.int16,
53
                np.int32, np.int64, np.uint8, np.complex64, np.complex128
54 55
        ]:
            return dtype.__name__
P
pkpk 已提交
56 57 58
    else:
        if dtype in [
                'bool', 'float16', 'float32', 'float64', 'int8', 'int16',
59 60 61
                'int32', 'int64', 'uint8', 'complex64', 'complex128', u'bool',
                u'float16', u'float32', u'float64', u'int8', u'int16', u'int32',
                u'int64', u'uint8', u'complex64', u'complex128'
P
pkpk 已提交
62 63
        ]:
            # this code is a little bit dangerous, since error could happen
64
            # when casting no-ascii code to str in python2.
P
pkpk 已提交
65 66 67 68 69
            # but since the set itself is limited, so currently, it is good.
            # however, jointly supporting python2 and python3, (as well as python4 maybe)
            # may still be a long-lasting problem.
            return str(dtype)

70
    raise TypeError(
71
        "dtype must be any of [bool, float16, float32, float64, int8, int16, "
72
        "int32, int64, uint8, complex64, complex128], but received %s" % dtype)
S
sneaxiy 已提交
73 74


75 76 77 78 79
def check_variable_and_dtype(input,
                             input_name,
                             expected_dtype,
                             op_name,
                             extra_message=''):
80
    check_type(input, input_name, Variable, op_name, extra_message)
81 82 83 84
    check_dtype(input.dtype, input_name, expected_dtype, op_name, extra_message)


def check_type(input, input_name, expected_type, op_name, extra_message=''):
85 86 87 88 89 90 91 92 93
    # NOTE [ Why skip dynamic graph check ]:
    # 1. If the input type / dtype of a layer is wrong, it will be reported
    # directly on that line. User can easily print the relevant information
    # on which line. It is easier to debug, so there is no need to check
    # in dynamic graph mode.
    # 2. Performance considerations. Because these checks are executed at
    # each step in dynamic graph mode, it will bring a heavy performance burden.
    if in_dygraph_mode():
        return
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    from .dygraph.dygraph_to_static.program_translator import in_declarative_mode
    # NOTE: `in_declarative_mode` is used to determined whether this op is called under
    # @declarative in transformation from dygrah to static layer. We add VarBase in
    # expected_type to skip checking because varBase may be created and used in unusual way.
    # Need a better design to be fix this.
    if in_declarative_mode():
        if not isinstance(expected_type, tuple):
            expected_type = (expected_type, )
        expected_type += (core.VarBase, )
    elif isinstance(input, core.VarBase):
        raise TypeError(
            "Please use `with fluid.dygraph.guard()` as context or `fluid.enable_dygraph()` to switch to imperative mode firstly. "
            "Because received '{}' in {} is a imperative Variable.".format(
                input_name, op_name))

110 111 112 113 114 115 116 117 118 119 120
    if not isinstance(input, expected_type):
        raise TypeError(
            "The type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_type, type(input), extra_message))


def check_dtype(input_dtype,
                input_name,
                expected_dtype,
                op_name,
                extra_message=''):
121 122 123
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
124 125 126 127 128 129 130 131 132 133 134
    if convert_dtype(input_dtype) in ['float16']:
        warnings.warn(
            "The data type of '%s' in %s only support float16 in GPU now. %s" %
            (input_name, op_name, extra_message))
    if convert_dtype(input_dtype) not in expected_dtype:
        raise TypeError(
            "The data type of '%s' in %s must be %s, but received %s. %s" %
            (input_name, op_name, expected_dtype, convert_dtype(input_dtype),
             extra_message))


135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
def check_shape(shape,
                op_name,
                expected_shape_type=(list, tuple, Variable),
                expected_element_type=(int, Variable),
                expected_tensor_dtype=('int32', 'int64')):
    # See NOTE [ Why skip dynamic graph check ]
    if in_dygraph_mode():
        return
    check_type(shape, 'shape', expected_shape_type, op_name)
    if expected_element_type is not None and not isinstance(shape, Variable):
        for item in shape:
            check_type(item, 'element of shape', expected_element_type, op_name)
            if expected_tensor_dtype is not None and isinstance(item, Variable):
                check_dtype(
                    item.dtype, 'element of shape', expected_tensor_dtype,
                    op_name,
                    'If element of shape is Tensor, its data type should be {}'.
                    format(', '.join(expected_tensor_dtype)))
    if expected_tensor_dtype is not None and isinstance(shape, Variable):
        check_dtype(shape.dtype, 'shape', expected_tensor_dtype, op_name)


Y
Yu Yang 已提交
157 158 159 160 161
class DataToLoDTensorConverter(object):
    def __init__(self, place, lod_level, shape, dtype):
        self.place = place
        self.lod_level = lod_level
        self.shape = shape
162 163 164 165 166 167 168
        negtive_count = 0
        for s in self.shape:
            if s < 0:
                negtive_count += 1
            if negtive_count > 1:
                self.shape = None
                break
S
sneaxiy 已提交
169 170
        self.dtype = convert_dtype(dtype)
        self._reset()
Y
Yu Yang 已提交
171

S
sneaxiy 已提交
172
    def _reset(self):
Y
Yu Yang 已提交
173
        self.data = []
S
sneaxiy 已提交
174
        self.lod = [[] for _ in six.moves.range(self.lod_level)]
Y
Yu Yang 已提交
175 176 177 178 179 180 181 182

    def feed(self, data):
        self._feed_impl_(data, self.lod, self.lod_level)

    def _feed_impl_(self, data, lod, lod_level):
        if lod_level == 0:
            self.data.append(data)
        else:
183
            lod[0].append(len(data))
Y
Yu Yang 已提交
184
            for each_data in data:
K
Kexin Zhao 已提交
185
                self._feed_impl_(each_data, lod[1:], lod_level - 1)
Y
Yu Yang 已提交
186

S
sneaxiy 已提交
187
    def _check_shape(self, shape):
S
sneaxiy 已提交
188 189 190 191 192 193
        for s1, s2 in zip(self.shape, shape):
            if s1 != s2 and s1 >= 0 and s2 >= 0:
                raise ValueError(
                    "Shape not match. What is defined in data layer is {}, but receive {}".
                    format(self.shape, shape))

Y
Yu Yang 已提交
194
    def done(self):
195
        arr = np.array(self.data, dtype=self.dtype)
S
sneaxiy 已提交
196 197
        if self.shape:
            if len(arr.shape) != len(self.shape):
S
sneaxiy 已提交
198 199 200 201 202 203
                try:
                    arr = arr.reshape(self.shape)
                except ValueError:
                    raise ValueError(
                        "Reshape error. What is defined in data layer is {}, but receive {}"
                        .format(self.shape, arr.shape))
Y
Yu Yang 已提交
204 205 206
        t = core.LoDTensor()
        t.set(arr, self.place)
        if self.lod_level > 0:
207
            t.set_recursive_sequence_lengths(self.lod)
S
sneaxiy 已提交
208
        self._reset()
Y
Yu Yang 已提交
209 210 211
        return t


S
sneaxiy 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
class BatchedTensorProvider(object):
    def __init__(self, feed_list, place, batch_size, generator, drop_last):
        self.place = place
        self.batch_size = batch_size
        self.generator = generator
        self.converters = []
        self.drop_last = drop_last

        for var in feed_list:
            assert var.lod_level == 0, "lod_level must be 0"
            self.converters.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=0,
                    shape=var.shape,
                    dtype=var.dtype))

    def _done(self):
        return [c.done() for c in self.converters]

    def __call__(self):
        idx = 0
        for each_sample in self.generator():
            for each_slot, each_converter in six.moves.zip(each_sample,
                                                           self.converters):
                each_converter.data.append(each_slot)

            idx += 1
            if idx == self.batch_size:
                idx = 0
                yield self._done()

        if not self.drop_last and idx > 0:
            yield self._done()
        else:
            [c._reset() for c in self.converters]


Y
Yu Yang 已提交
250
class DataFeeder(object):
C
chengduoZH 已提交
251
    """
252 253
    :api_attr: Static Graph
    
C
chengduoZH 已提交
254
    DataFeeder converts the data that returned by a reader into a data
255 256 257 258 259 260 261 262 263 264 265 266 267 268
    structure that can feed into Executor. The reader is usually a 
    python generator that returns a list of mini-batch data entries. 

    Parameters:
        feed_list (list): Variables or names of Variables that need
            to feed.
        place (:ref:`api_fluid_CPUPlace` | :ref:`api_fluid_CUDAPlace` ): 
            place indicates the device (CPU | GPU) the data will be fed into, if 
            you want to feed data into GPU, please using :code:`fluid.CUDAPlace(i)` 
            (:code:`i` represents the GPU id), or if you want to feed data into CPU, 
            please using :code:`fluid.CPUPlace()`.
        program (:ref:`api_fluid_Program` , optional): The Program that will 
            feed data into, if program is None, it will use default_main_program(). 
            Default None.
C
chengduoZH 已提交
269 270

    Raises:
271
        :code:`ValueError` - If some Variables are not in this Program.
C
chengduoZH 已提交
272

273
    Example:
274 275 276 277 278 279
        ..  code-block:: python

            import numpy as np
            import paddle
            import paddle.fluid as fluid
            
C
chengduoZH 已提交
280
            place = fluid.CPUPlace()
281
            def reader():
282 283
                for _ in range(4):
                    yield np.random.random([4]).astype('float32'), np.random.random([3]).astype('float32'),
284 285 286 287 288
            
            main_program = fluid.Program()
            startup_program = fluid.Program()
            
            with fluid.program_guard(main_program, startup_program):
289 290
                data_1 = fluid.data(name='data_1', shape=[None, 2, 2], dtype='float32')
                data_2 = fluid.data(name='data_2', shape=[None, 1, 3], dtype='float32')
291 292 293
                out = fluid.layers.fc(input=[data_1, data_2], size=2)
                # ...
            feeder = fluid.DataFeeder([data_1, data_2], place)
294
            
295 296
            exe = fluid.Executor(place)
            exe.run(startup_program)
297 298 299 300 301 302 303 304 305 306
            
            feed_data = feeder.feed(reader())
            
            # print feed_data to view feed results
            # print(feed_data['data_1'])
            # print(feed_data['data_2'])
            
            outs = exe.run(program=main_program,
                            feed=feed_data,
                            fetch_list=[out])
307
            print(outs)
308

C
chengduoZH 已提交
309 310
    """

F
fengjiayi 已提交
311
    def __init__(self, feed_list, place, program=None):
Y
Yu Yang 已提交
312 313 314 315
        self.feed_dtypes = []
        self.feed_names = []
        self.feed_shapes = []
        self.feed_lod_level = []
F
fengjiayi 已提交
316 317
        if program is None:
            program = default_main_program()
Y
Yu Yang 已提交
318
        for each_var in feed_list:
319
            if isinstance(each_var, six.string_types):
F
fengjiayi 已提交
320
                each_var = program.block(0).var(each_var)
Y
Yu Yang 已提交
321 322 323 324 325
            if not isinstance(each_var, Variable):
                raise TypeError("Feed list should contain a list of variable")
            self.feed_dtypes.append(each_var.dtype)
            self.feed_names.append(each_var.name)
            self.feed_lod_level.append(each_var.lod_level)
S
sneaxiy 已提交
326
            self.feed_shapes.append(each_var.shape)
Y
Yu Yang 已提交
327 328 329 330

        self.place = place

    def feed(self, iterable):
C
chengduoZH 已提交
331
        """
332 333
        According to :code:`feed_list` of :code:`DataFeeder` and :code:`iterable` , converts 
        the input into a data structure that can feed into Executor.
C
chengduoZH 已提交
334

335 336
        Parameters:
            iterable (generator): user defined python generator to read the raw input data
C
chengduoZH 已提交
337

338 339
        Returns: 
            :code:`dict`: a :code:`dict` that contains (variable name - converted tensor) pairs
340

341
        Example:
342 343
            ..  code-block:: python

344 345 346 347 348 349
                # In this example, reader - generator will return a list of ndarray of 3 elements
                # feed API will convert each ndarray input into a tensor
                # the return result is a dict with keys: data_1, data_2, data_3
                # result['data_1']  a LoD-Tensor with shape of  [5, 2, 1, 3]. 5 is batch size, and [2, 1, 3] is the real shape of data_1.
                # result['data_2'], result['data_3'] are similar.
                import numpy as np
350 351 352
                import paddle.fluid as fluid
                
                def reader(limit=5):
353 354
                    for i in range(1, limit + 1):
                        yield np.ones([6]).astype('float32') * i , np.ones([1]).astype('int64') * i, np.random.random([9]).astype('float32')
355
                
356 357 358
                data_1 = fluid.data(name='data_1', shape=[None, 2, 1, 3])
                data_2 = fluid.data(name='data_2', shape=[None, 1], dtype='int64')
                data_3 = fluid.data(name='data_3', shape=[None, 3, 3], dtype='float32')
359 360
                feeder = fluid.DataFeeder(['data_1','data_2', 'data_3'], fluid.CPUPlace())
                
361 362 363 364
                
                result = feeder.feed(reader())
                print(result['data_1'])
                print(result['data_2'])
365
                print(result['data_3'])
366

C
chengduoZH 已提交
367
        """
Y
Yu Yang 已提交
368
        converter = []
369
        for lod_level, shape, dtype in six.moves.zip(
Y
Yu Yang 已提交
370 371 372 373 374 375 376 377 378
                self.feed_lod_level, self.feed_shapes, self.feed_dtypes):
            converter.append(
                DataToLoDTensorConverter(
                    place=self.place,
                    lod_level=lod_level,
                    shape=shape,
                    dtype=dtype))

        for each_sample in iterable:
379
            assert len(each_sample) == len(converter), (
380 381
                "The number of fields in data (%d) does not match " +
                "len(feed_list) (%d)") % (len(each_sample), len(converter))
382 383
            for each_converter, each_slot in six.moves.zip(converter,
                                                           each_sample):
Y
Yu Yang 已提交
384 385
                each_converter.feed(each_slot)
        ret_dict = {}
386 387
        for each_name, each_converter in six.moves.zip(self.feed_names,
                                                       converter):
Y
Yu Yang 已提交
388 389
            ret_dict[each_name] = each_converter.done()
        return ret_dict
Y
yuyang18 已提交
390 391

    def feed_parallel(self, iterable, num_places=None):
C
chengduoZH 已提交
392
        """
393 394
        Similar with feed function, feed_parallel is used with multiple devices (CPU|GPU).
        Here :code:`iterable` is a list of python generators. The data return by each 
T
tianshuo78520a 已提交
395
        generator in the list will be fed into a separate device.        
C
chengduoZH 已提交
396

397
        Parameters:
T
tianshuo78520a 已提交
398
            iterable (list|tuple): list of user-defined python generators. The element 
399 400 401
                number should match the :code:`num_places`.
            num_places (int, optional): the number of devices. If not provided (None), 
                all available devices on the machine will be used. Default None.
C
chengduoZH 已提交
402

403 404 405
        Returns: 
            :code:`generator`: a :code:`generator` that generate dict which contains (variable name - converted tensor) pairs, 
            the total number of dicts will be generated matches with the :code:`num_places`
C
chengduoZH 已提交
406

407 408
        .. note::        
            The number of devices - :code:`num_places` should equal to the generator (element of :code:`iterable` ) number
409

410
        Example:
411 412
            ..  code-block:: python

413
                import numpy as np
414
                import paddle.fluid as fluid
415

416 417 418 419 420
                def generate_reader(batch_size, base=0, factor=1):
                    def _reader():
                        for i in range(batch_size):
                            yield np.ones([4]) * factor + base, np.ones([4]) * factor + base + 5
                    return _reader()
421 422 423 424

                x = fluid.data(name='x', shape=[None, 2, 2])
                y = fluid.data(name='y', shape=[None, 2, 2], dtype='float32')

425
                z = fluid.layers.elementwise_add(x, y)
426

427
                feeder = fluid.DataFeeder(['x','y'], fluid.CPUPlace())
428
                place_num = 2
429 430 431 432 433
                places = [fluid.CPUPlace() for x in range(place_num)]
                data = []
                exe = fluid.Executor(fluid.CPUPlace())
                exe.run(fluid.default_startup_program())
                program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(places=places)
434

T
tianshuo78520a 已提交
435
                # print sample feed_parallel r result
436 437 438
                # for item in list(feeder.feed_parallel([generate_reader(5, 0, 1), generate_reader(3, 10, 2)], 2)):
                #     print(item['x'])
                #     print(item['y'])
439

440 441 442
                reader_list = [generate_reader(5, 0, 1), generate_reader(3, 10, 2)]
                res = exe.run(program=program, feed=list(feeder.feed_parallel(reader_list, 2)), fetch_list=[z])
                print(res)
443

C
chengduoZH 已提交
444
        """
Y
yuyang18 已提交
445 446 447
        if isinstance(self.place, core.CUDAPlace):
            places = [
                core.CUDAPlace(i)
448 449
                for i in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
450 451 452 453
            ]
        else:
            places = [
                core.CPUPlace()
454 455
                for _ in six.moves.xrange(
                    self._get_number_of_places_(num_places))
Y
yuyang18 已提交
456 457 458 459 460 461 462 463 464
            ]

        if len(iterable) != len(places):
            raise ValueError("feed_parallel takes multiple mini-batches. Each "
                             "mini-batch will be feed on each device. The "
                             "number of devices and number of mini-batches "
                             "must be same.")

        place = self.place
465
        for p, batch in six.moves.zip(places, iterable):
Y
yuyang18 已提交
466 467 468 469 470 471 472 473
            self.place = p
            yield self.feed(batch)
        self.place = place

    def _get_number_of_places_(self, num_places):
        if num_places is not None:
            return int(num_places)
        elif isinstance(self.place, core.CUDAPlace):
C
chengduo 已提交
474
            return len(_cuda_ids())
Y
yuyang18 已提交
475
        else:
C
chengduo 已提交
476
            return _cpu_num()
Y
yuyang18 已提交
477 478 479 480 481 482

    def decorate_reader(self,
                        reader,
                        multi_devices,
                        num_places=None,
                        drop_last=True):
C
chengduoZH 已提交
483
        """
484 485 486 487 488
        Decorate the reader (generator) to fit multiple devices. The reader generate
        multiple mini-batches. Each mini-batch will be fed into a single device.

        Parameters:
            reader(generator): a user defined python generator used to get :code:`mini-batch` of data.
T
tianshuo78520a 已提交
489
                A :code:`mini-batch` can be regarded as a python generator that returns batches of input 
490 491 492 493 494 495 496 497 498 499 500
                entities, just like the below :code:`_mini_batch` in the code example.                      
            multi_devices(bool): indicate whether to use multiple devices or not.
            num_places(int, optional): if :code:`multi_devices` is True, you can specify the number
                of devices(CPU|GPU) to use, if multi_devices is None, the function will use all the
                devices of the current machine. Default None.
            drop_last(bool, optional): whether to drop the last round of data if it is not enough to 
                feed all devices. Default True.

        Returns: 
            :code:`generator`: a new :code:`generator` which return converted dicts that can be fed into Executor
            
C
chengduoZH 已提交
501
        Raises:
502
            :code:`ValueError`: If drop_last is False and the data cannot fit devices perfectly.
503

504
        Example:
505 506
            ..  code-block:: python

507
                import numpy as np
508 509
                import paddle
                import paddle.fluid as fluid
510
                import paddle.fluid.compiler as compiler
511
                
512 513 514 515
                def reader():
                    def _mini_batch(batch_size):
                        for i in range(batch_size):
                            yield np.random.random([16]).astype('float32'), np.random.randint(10, size=[1])
516

517 518
                    for _ in range(10):
                        yield _mini_batch(np.random.randint(1, 10))
519
                
520 521
                place_num = 3
                places = [fluid.CPUPlace() for _ in range(place_num)]
522
                
523
                # a simple network sample
524 525
                data = fluid.data(name='data', shape=[None, 4, 4], dtype='float32')
                label = fluid.data(name='label', shape=[None, 1], dtype='int64')
526 527
                hidden = fluid.layers.fc(input=data, size=10)
                
528 529
                feeder = fluid.DataFeeder(place=places[0], feed_list=[data, label])
                reader = feeder.decorate_reader(reader, multi_devices=True, num_places=3, drop_last=True)
530
                
531
                exe = fluid.Executor(places[0])
532
                exe.run(fluid.default_startup_program())
533
                compiled_prog = compiler.CompiledProgram(
534 535
                         fluid.default_main_program()).with_data_parallel(places=places)
                
536
                for i,data in enumerate(reader()):
537 538
                    # print data if you like
                    # print(i, data)
539
                    ret = exe.run(compiled_prog, feed=data, fetch_list=[hidden])
540 541
                    print(ret)

C
chengduoZH 已提交
542 543
        """

Y
yuyang18 已提交
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        def __reader_creator__():
            if not multi_devices:
                for item in reader():
                    yield self.feed(item)
            else:
                num = self._get_number_of_places_(num_places)
                item = []
                for batch in reader():
                    item.append(batch)
                    if len(item) == num:
                        yield list(self.feed_parallel(item, num))
                        item = []
                if not drop_last and len(item) != 0:
                    raise ValueError(
                        "The data batch which cannot fit for devices will be "
                        "dropped is not implementation. Other strategies are "
                        "not implemented")

        return __reader_creator__